

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

28

Vol: 10 No:1, January 2014 ISSN: 2222-8373

ENFORCING WEB APPLICATION AGAINST HTML BRUTE FORCE

ATTACK

Dr. Samer Saeed Essa

AL_Rafidain University College

Computer Science Department

sammersaeed@yahoo.com

Abstract

 Securing web applications is today's most common aspect of securing the enterprise.

Web application hacking is on the rise with as many as 80% of cyber attacks done at web

application level or via the web. Most corporations have secured their data at the network

level, but have overlooked the crucial step of checking whether their web applications are

vulnerable to attack. This paper is devoted for presenting a model to protect web pages that

acquire passwords and user names against HTML brute force. Along this paper the model will

be presented as same as the methodologies of implementation. Algorithms of implementation

also will be presented to emphasize the idea where all HTTP packets are trapped and relayed

down the stack of the TCP/IP by inserting before HTTP (Port 80) and all HTTP traffic of

information that is captured to check for the parameter passing in web and this proposed

technique is called Enforcing layer.

Keywords: Web applications, Web Authentication, Web Attacking, Brute Force Attack,

HTTP (Port 80).

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

29

Vol: 10 No:1, January 2014 ISSN: 2222-8373

 HTML Brute Force جومِ فَرْض تطبیقِ الویبِ ضدّ ھ

 د.سامر سعید عیسى

 كلیة الرافدین الجامعة

 قسم علوم الحاسوب

 الملخّص

ً الیومُ . حیث أن الھجمات أن تأمین تطبیقاتِ الویبِ وضمان المنتج المنشور في الویب ھو المجال الأكثر شیوعا

خرى على مستوى تطبیقِات الویبِ أوَ من خلال مِنْ ھجمات الإنترنتِ الأ % 80على تطبیقِات الویبِ في إرتفاع وبنسبة

الویب نفسھ , حیث أمنت معظم الشركات بیاناتھِا على مستوى الشبكةَ ، ولكن قد أغفلت خطوة مھمھ وھي التحقق في ما أذّا

مة كانت التطبیقات على الویبِ عرضة للھجومِ. ھذا البحث ُمكرّسُ لعرض نموذج حِمایة صفحاتِ الویب التي تتطلب كل

و على طول ھذا البحث سیعرض النموذج HTML Brute Forceالسر وأسم المستخدم لتجنب المھاجمة من قبل

سیتم حَْصرھا ونقلھا في HTMLكمنھجیاتِ تطبیقیة وأن تطبیق ھذه الخوارزمیة سوف تعرض لتؤكد فكرةِ كُلّ حُزَم

Stack خاص بالبروتوكولTCP/IP الدخول ألى من خلال أضافة معلومات قبلPort 80 وذلك لغرض فحص تلك

 . Enforcing Layerوأن ھذا الأسلوب المفترض في ھذا البحث یدعى Portالمعلومات قبل تمریرھا الى ھذا

 . httpلبروتوكول 80: تطبیقات الویب , تخویل الویب , قرصنة الویب , المھاجمھ بقوه (بعمق) , بوابة الكلمات المفتاحیة

Introduction

 A web threat is any threat that uses the internet to facilitate cybercrime Web threats

use multiple types of malware and fraud, all of which utilize HTTP or HTTPS protocols, but

may also employ other protocols and components, such as links in email or IM, or malware

attachments or on servers that access the Web. They benefit cybercriminals by stealing

information for subsequent sale and help absorb infected PCs into both nets [1]. Web threats

pose a broad range of risks, including financial damages, identity theft, loss of confidential

information/data, theft of network resources, damaged brand/personal reputation, and erosion

of consumer confidence in e-commerce and online banking. Figure (1) shows the

International Statistics for the threats on the web [2]. Web sites now has members that could

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

30

Vol: 10 No:1, January 2014 ISSN: 2222-8373

reach hundreds or sometimes thousands over the entire world, with such sites the possibility

of guessing the password for a random client could be increased due to the probability theory.

Brute force attack is a technique that could be used to sweep over a certain set of elements to

hit a specific collection of the set elements [3,4]. The target is a certain collection from that

set that may composes a key for a certain problem (i.e. a password). Web applications

considered this issue and tried to enhance the password against brute force attack by, first,

increasing the length of the password and second, increasing the length of the set that the

password is composed from.

Brute force attack now a day’s step into the world of intelligence and the mechanisms

just moved to other horizon by trying to collect information about the target subjected to the

attack and may be use some dictionary method or other methods to creep into the system [2].

Some systems can easily protect themselves against this attack by limiting the tries to a

certain number of fails and then back list the source of tries. This is a sustainable method with

network of fixed source like GSM networks, where the authentication is tied to the device

itself and can’t be originated from different sources, but with the Internet, the story is totally

different [5,6]. The attacker can easily change the source of attack at each try and use a lot of

different user names, as it has been announced before, some sites has members of thousands

of clients [2].

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

31

Vol: 10 No:1, January 2014 ISSN: 2222-8373

1. Attacking Web Authentication

Authentication is a crucial element of any web application now days; the major

authentication mechanisms in use on the Internet today are the user name and the password.

How are such mechanisms attacked? In the next section, this paper will discuss techniques

that can be used to exploit common vulnerabilities in Web authentication. The fact that

authentication even exists for an

 application suggests that the application developer has created some security infrastructure to

prevent the casual hacker from easily obtaining access to other users’ data. Hence, attacking

Web authentication is not going to be a walk in the park. As always, however, it’s the

implementation that brings down the house [2,7].

Figure (1): shows that international statistics for Web threats

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

32

Vol: 10 No:1, January 2014 ISSN: 2222-8373

1.1 Password Guessing

Password guessing is the most effective technique to Defeat Web authentication.

Assuming there isn’t some flaw in the selection of authentication protocol or its

implementation, the most vulnerable aspect of most authentication systems is user password

selection [7].

Password guessing attacks can be carried out manually or via automated means.

Manual password guessing is tedious, but we find human intuition infrequently beats

automated tools, especially when customized error pages are used in response to failed forms-

based login attempts. in performing password guessing manually the attacker will sweep

through some familiar pairs (Administrator/null, admin/admin … etc). With an automated

tool, an entire dictionary of username/password guesses can be thrown at an application much

more quickly than human hands can type them. Password guessing can be performed against

almost all types of Web authentication.

1.2 Web Cracker

When encountering a page protected by Basic authentication in the consulting work, it

will generally turn to Web Cracker to test account credential strength. Web Cracker is a

simple tool that takes text lists of usernames and passwords (or combinations of both) and

uses them as dictionaries to implement Basic auth password guessing. It keys on “HTTP 302

Object Moved” responses to indicate a successful guess, and it will find all successful guesses

in a given username/password file (that is, it won’t stop guessing once it finds the first valid

account). Figure (2) shows the main page of Web Cracker. [2, 8]

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

33

Vol: 10 No:1, January 2014 ISSN: 2222-8373

1.3 Brutus

Brutus is a generic password guessing tool that comes with built-in routines for

attacking HTTP Basic and Forms-based authentication, among other protocols like SMTP and

POP3. Brutus can perform both dictionary attacks (based on pre-computed wordlists like

dictionaries) and brute-force attacks where passwords are randomly generated from a given

character set (say, lowercase alphanumeric). Figure (3) shows the main Brutus interface after

performing a Basic auth password guessing attack.

Figure (2): shows the main page of the Web Cracker application

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

34

Vol: 10 No:1, January 2014 ISSN: 2222-8373

We are particularly impressed with the Forms-based auth attacker, primarily the

Modify Sequence | Learn Form Settings feature. This allows you to simply specify a URL to a

login form and Brutus automatically parses out the fields for username, password, and any

other fields supported by the form (including hidden). Brutus also allows you to specify what

responses you expect from the login form if a successful event occurs. This is important;

because of the highly customizable nature of Forms auth, it is common for sites to implement

unique response pages to successful or unsuccessful login. This is one of the primary

impediments to successful password guessing against Forms-based auth. With the Brutus tool,

you can customize password guessing to whatever responses the particular target site uses

[2, 4].

Figure (3): the main page of the Brutus application

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

35

Vol: 10 No:1, January 2014 ISSN: 2222-8373

The one thing that annoys us about Brutus is that it does not display guessed

passwords when performing Forms auth attacks. We have also occasionally found that it

issues false positive results, claiming to have guessed an account password when it actually

had not. Overall, however, it’s tough to beat the flexibility of Brutus when it comes to

password guessing.

1.4 Session ID Prediction and Brute Forcing

Many e-commerce sites use a session identifier (session ID) in conjunction with Web

authentication. A typical implementation stores a session ID once a user has successfully

authenticated so that they do not need to retype credentials. Thus, if session identifiers are

used in the authentication process, an alternative to attacking the passwords is to attack the

session ID. Since the session ID can be used in lieu of a username and password combination,

providing a valid session ID in a request would allow a hacker to perform session hijacking or

replay attacks if the session ID is captured or guessed. The two techniques used to perform

session hijacking are session ID prediction and brute forcing.

A secure session ID should be randomly generated to prevent prediction. However,

many implementations do not follow this principle. Have seen many Web sites fall by using

predictable, sometimes sequential, session identifiers. Many mathematical techniques such as

statistical forecasting can be used to predict session identifiers.

The second technique for attacking session ID involves making thousands of simultaneous

requests using all possible session IDs. The number of requests that need to be made depends

on the key space of session ID. Thus, the probability of success of this type of attack can be

calculated based on the size and key space of the session ID [2].

1.5 Countermeasures for Password Guessing

The most effective countermeasure against password guessing and brute forcing is a

combination of a strong password policy and a strong account lockout policy. After a small

number of unsuccessful login attempts, the application should lock the account to limit the

exposure from this type of attack. However, be careful of denial-of-service attacks against an

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

36

Vol: 10 No:1, January 2014 ISSN: 2222-8373

application with an excessively paranoid account lockout policy. A malicious attacker could

try to lock out all of the accounts on the system. A good compromise that many application

developers choose is to only temporarily lock out the account over the certain time [7, 8].

3. Brute Force Attack [9]

In cryptography, a brute-force attack, or exhaustive key search, is a strategy that can,

in theory, be used against any encrypted data. Such an attack might be utilized when it is not

possible to take advantage of other weaknesses in an encryption system (if any exist) that

would make the task easier. It involves systematically checking all possible keys until the

correct key is found. In the worst case, this would involve traversing the entire search space.

The key length used in the encryption determines the practical feasibility of

performing a brute-force attack, with longer keys exponentially more difficult to crack than

shorter ones. Brute-force attacks can be made less effective by obfuscating the data to be

encoded, something that makes it more difficult for an attacker to recognize when he/she has

cracked the code. One of the measures of the strength of an encryption system is how long it

would theoretically take an attacker to mount a successful brute-force attack against it.

Brute-force attacks are an application of brute-force search, the general problem-

solving technique of enumerating all candidates and checking each one.

4. The Proposed Hypothesis

The proposal presented in this paper is to prove a hypothesis that any rapid change in

the incoming quires is a suspicious action and the changed part of the quires has a very high

probability to be the password field especially if some replies from the server side are failed.

The following figure (4) shows the basic idea of the hypothesis:

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

37

Vol: 10 No:1, January 2014 ISSN: 2222-8373

The communication between the internet explorer and the web server is implemented

through the HTTP and the policy is based on the request and response.

 When the user requests a certain web page, the explorer will send an HTTP packet as

the following:

GET /serverdirectory/filename

HTTP/1.1

Accept:*/*

Referrer: http://website

I
n
t
e
r
n
e
t

f
i
r
e

Web Server

IIS, Apache…etc

Repository

Web
Application

PHP. ASP,

HTTP – Port 80

Figure (4): the basic idea of the hypothesis

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

38

Vol: 10 No:1, January 2014 ISSN: 2222-8373

The above is for the static web page retrieval but the modern approach is by

contacting active server pages (i.e., PHP, JSP, ASP…). These server pages have a program

that accepts the user request as an argument and response upon it with the corresponding

action as an HTML text sent to the requester (client Internet Explorer).

A URL parameter is a name/value pair appended to a URL. The parameter begins with

a question mark (?) and takes the form name=value. If more than one URL parameter exists,

each parameter is separated by an ampersand (&). The following example shows a URL

parameter with two name/value pairs:

http://server/path/document?name1=value1&name2=value2

In this paper inserted a filter driver before HTTP (Port 80) and all HTTP traffic are

captured to check for the parameter passing that is called enforcing layer as show in figure (5)

I
n
t
e
r
n
e
t

f
i
r
e

Web Server

IIS, Apache…etc

Repository

Web
Application

PHP. ASP,

HTTP – Port 80 Enforcing layer

Figure (5): Insert the Enforcing Layer

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

39

Vol: 10 No:1, January 2014 ISSN: 2222-8373

4.1 The Proposal Algorithms

In this section present the two algorithms which one that are implement to

check the suspicious brute force and another algorithm make to detect the brute force

attack.

4.1.1 Suspicious Brute Algorithm

This algorithm implement to check the suspicious brute force by initializing buffer with 8

mega bytes with array called timer and capture the HTTP packet to check that is present

bellow:

1- Initialize Buffer Area with 8 mega byte

2- Initialize timer array

3- Capture the next HTTP packet

4- If the requested resource is not an Active Server Page with arguments, goto 10

5- Register the resource name , increase the resource reference counter

6- Timer [resource reference counter] = GetSystemTime.

7- If resource reference counter < brute threshold, goto 3

8- Calculate the standard deviation for the differences in the arrivals of the requests for

the resource

9- If the standard deviation is slow , <= 0, goto 11

10- Serialize all captured packet to HTTP (Port 80).

11- Start brute attack detected

4.1.2 Brute Attack Detected Algorithm

This algorithm implement of detected the brute force attack by checking the request

resource with the register resource that is present bellow:

1- If the requested resource within the registered resources, goto 5

2- Redirect the requested resource (i.e., Web page) to a fake resource

3- Register the resource that the brute attack detected

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

40

Vol: 10 No:1, January 2014 ISSN: 2222-8373

4- Restart the Suspicious brute

5- Send member confirmation form

5. The Application of Proposed System

In this section is presenting the information flow when clients interact web application;

we mean here the web applications that are under the monitoring of the proposed system

through the essential components, show that in figure (6).

Figure (6) The essential components of proposed system

StdDivProc

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

41

Vol: 10 No:1, January 2014 ISSN: 2222-8373

The essential components of proposed system are:

1- Web client: it is the internet explorer used to browse for the web application; any

internet explorer can be used such as firefox, internet explorer, safari, …, or others.

2- Web application server: the platform used to host web application; web application

has to cope with web application server in order to run smoothly, many web

application servers are available such as Glassfish and TomCat. This thesis is using

TomCat due to its light weight and performance despite that fact that TomCat does not

support EJB by default.

3- JSP pages: these are the front edge of the web application and are to be accessed over

the internet using the web client software. Each JSP page is assigned a unique URL

(Unified Resource Locator) or URI (Unified Resource Identifier).

4- Servlets: these are the real business logic to process incoming client request and

present responses to web client applications. Servlets are running within a servlet

context which is the directory in which the servlet is running.

5- Web filter: it is an object installed to intercept client request before it gets to servlet

and JSP; web filter has been used to forward incoming traffic to Agent behaviours

6- HttpServletRequest: this is an object in which clients information is encapsulated.

Any data passed from web client to web server is packed into the HttpServletRequest

object. It is the responsibility to web application programmer to intercept this object

and extract passed parameters.

7- HttpServletResponse: this is an object in which information is passed back to the

web client software.

Web filter or in other words the servlet filter is installed at the server side to capture all

traffic between client side and server side. HTTP packets are interpreted and all parameters

are revealed. User name and password are normally hidden input an element added to HTML

page and then in the figure (7) presents the semantics used to interpret HTTP packet:

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

42

Vol: 10 No:1, January 2014 ISSN: 2222-8373

Http
Request

Http
body

Has_a

Http
Header

Has_a

Content-
type

Has_a

HTML
Parameters

Has_a

is_a

Client
Name

password

is_a

Verification
code

is_a

Email
address

is_a

Request
type

Has_a

POST

GET

Figure (7): Ontology used to interpret HTTP request packet

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

43

Vol: 10 No:1, January 2014 ISSN: 2222-8373

HTTP packets are captured by web filter by installing servlet filter as it is presented by

figure (8), where this filter is responsible on retrieving parameters accompanied request

coming from client browsers.

Public void dofilter(ServletRequest
request, ServletResponse response,
FilterChain chain) {

 doBeforeProcessing(request,
response);

 String name = null;

 If((name =
request.getParameter()) != NULL
&& password =
request.getParameter() != NULL)
{

 RequestDispatcher rDisp =
request.getRequestDispatcher("

Figure (8): Servlet Filter installed to Capture HTTP packet and forward it to other
Processing Elements

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

44

Vol: 10 No:1, January 2014 ISSN: 2222-8373

Conclusions

1- HTML based brute attack can be detected upon rapid time change for the requesting

packets for a certain resources.

2- The Attacker can change the time interval but this will make the attack infeasible for him.

3- Server side programmers should consider long time brute force attack and change

passwords corresponding matrices.

4- Brute force attack might hit a success with less tries, this is a big problem and there should

be considered in different manner.

5- The site with huge number of members has the largest potential to lie down be brute force.

6- The standard deviation dose not effect the speed of the internet response if the following

rule has been satisfies: Tprocess < Tinternet , where Tprocess: is the time needed to

process standard deviation on local computer and Tinternet: is the time needed to

transfer the reply to requester, in other words the speed of reply. (Broadly speaking, in

the modern machine this rule is always satisfied).

References

1. Andrew S. Tanenbaum, Vrije University, “ Modern Operating Systems”, Prentic-Hall,

Inc. 2001

2. Joel Scambray and Mike Shema, “Web Application Security Secrets & Solutions”,

McGraw-Hill, 2002

3. P. J. Deitel and H. M. Deitel, “Internet & World Wide Web , How to Program”, Pearson

Education, Inc. 2009

4. Shreeraj Shah, “Advanced Web Hacking”, EUSecWest conference in London, 2006

5. IRV Englander, Bentley College, “The Architecture of Computer Hardware And

Systems Software”, John Wiley and Sons. Inc., 2003

6. P.J. Deitel and H.M. Deitel, “ Java, How to Program”, Pearson Education, Inc. 2005

7. Mount Ararat Blossom, “ Securing IIS by Breaking”, preceding of (http://hackbbs.org),

2000

ENFORCING WEB APPLICATION AGAINST HTML BRUTE

FORCE ATTACK

Dr. Samer Saeed Essa

45

Vol: 10 No:1, January 2014 ISSN: 2222-8373

8. P.J. Deitel and H.M. Deitel, “ Java Web Services for Experienced Programmers”,Pearson

Education, Inc. 2003

9. Wikimedia Foundation,"Brute Force Attack", www.wikimediafoundation.org , 30 March

2012.

