

Transcriptional stress response of Escherichia coli bacteria to heat shock with micro array technique

Ahmad Nizamedien Barzingi

Department of Chemistry/ Faculty of Education/ University of Garmian/ barzingia@yahoo.de

Abstract

In this study, DNA microarray (DNA Chip) technique has been used in tecqnical chemistry depratment from univeristy of Hannover-Germany. This technique was used to study the gene expression of 96 genes of E. coli under two different temperature conditions at (37 °C and 50 °C) for 10 min. Thus, the heat shock response of E. coli was observed, that most of genes were up regulated, except only 12 genes were down regulated.

Key words: DNA-microarray. Gene Expression, heat shock response of E. coli

رد فعل توتري النسخي من البكتيريا القولونية إلى الصدمة الحرارية مع تقنية (DNA microarray)

احمد نظام الدین برزنجی قسم الکیمیاء/فاکلتی التر بیة/ جامعة کر میان

الخلاصة

اجريت هذه الدراسة فى احدى مختبرات الكيمياء التكنيكية/ جامعة هانوفر الالمانية باستخدام تقنية حديثة وهي ال (DNA microarray) لدراسة التعبير الجيني (Expression Gene) لبكتريا الأشريشية القولونية (E.coli) في درجات حرارة مختلفة, وقد اجريت الدراسه على 96 جين في درجتين حراريتين مختلفتين (37 و 50 مُ) لمدة 10 دقائق, لوحظ نتيجة لصدمة الحرارية, استجابة اغلب الجينات للتنظيم الى الاعلى, ما عدا 12 جينا كانت استجابهم للتنظيم الى الاسفل.

كلمات مفتاحية: التعبير الجيني, أثر الصدمة الحرارية لبكتريا الاشريشية القولونية. DNA-microarray

Introduction

DNA-Chip(DNA microarray)

DNA chip or DNA microarray are fixed array of single-stranded DNA on the Planner surfaces (surfaces usually derivatives glass, rare silicon surfaces) for the detection of RNA or DNA molecules. Have the spots with immobilized DNA has a diameter about 200 µm so we also speak of micro array [1]. The term array is derived from the English by arrangement, in German, but the array is based on the information technology as a "chip" refers to [2]. To detect DNA fragments with DNA chip, DNA is labeled with a dye-Fluorescent then with the chip is brought into contact. The immobilized DNA on the chip are complementary to the DNA samples, is such a bond between the two complementary. The chip is read out, after a washing process, the unbound DNA molecules are removed. The use of fluorescentlabelled DNA is the detection events with a of binding laser scanner (GMS428) simultaneously the quantification of the signal is obtained.

The application of DNA chip is most gene expression studies. For theses such studies. the RNA from the sample to be examined (eg, cells or tissue) obtained, transcribed into cDNA by reverse transcription and with two different fluorescent dyes selected. The sample under test are displayed the DNA chip is brought into on contact, all hybridized simultaneously the DNA chip located genetic samples with on a capture molecules. This demonstrates the significant advantage of this technology over other methods for studying gene expression.

- A DNA chip experiment thus consists of five main steps:
- 1. the gene probe can be selected and printed on the chip.
- 2. of cells / tissue, the isolated mRNA.

3. The mRNA is transcribed into cDNA and fluorescently labelled reverse.

4. The fluorescently labelled cDNA is hybridized overnight to the chip.

5. The next day, the chip is washed with washing buffer, scanned, and performed the data analysis.

Materials and Methods

I have the use of materials and a precise description of the performance of the experiment in the script "To assess the amount of stress (heat shock) performed on *E. coli* cells, in technical chemistry department from university of Hannover-Germany. To illustrate, however in Fig.2.1 the main steps are shown. The experiment was carried out with total RNA, the work with the RNA requires certain measures because RNAse requires more stable than any DNAse and cofactors for its activity. That's why it was in the course of this experiment always wore gloves and used sterile plastic goods and pure buffer.

DIYALA JOURNAL FOR PURE SCIENCES

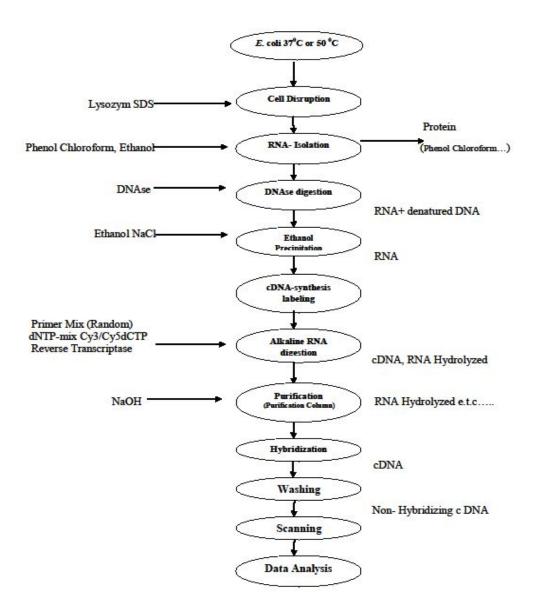


Figure 2.1: Implementation of the DNA micro array experiment.

Preparation of E. coli culture and RNA extraction

- 1- Prepared two E. coli cultures, one at 50 °C for 10 min and chased the other remains at 37
- °C, both are with multi centrifuge at 4000rpm for 5-8 min and the pellet was placed in freezer.
- 2- RNA isolated from two E. coli cultures with Phenol/chloroform method
- 3- The concentration and purity of RNA Measured with Micro volume spectrophotometer

Labelling and cDNA synthesis

Direct labeling with the Super Script III or total script OLS

PCR-Purification-Kit

PCR purification kit (QIAquick[®] PCR Purification Kit, Qiagen) is used to design the unbound Cy3, Cy5.

Drying of the sample in the Speed vac

The sample is dried to remove the residual water molecules and does not hybridize helix cDNA.

Washing

The Slides to be washed in three Buffers (Sodium chloride + Sodium citrate) each for 5 min, The hybridized chip in the array scanner Axon 4000B read simultaneously at 532 nm (Cy3) and 635 nm (Cy5)

Data Analysis

The saved TIFF files are loaded into the PC program "ImaGene". Over the spots a raster is then placed, indicating the program area are in which the spots and the background area. In the ImaGene a computer program is integrated, which converts the spots and the background in numerical values.

All genes are significantly regulated with a ratio <-2 and > 2, this result for example are illustrated as a histogram in Figure 3.1. It shows all 96 genes. The Y-axis represents the ratio

value and the x-axis genes can be read, how many genes are accordingly regulated. In this gene regulation almost genes are up regulated and about very few genes (Approx. 12 genes) are down regulated

<u>Result</u>

Table 3.1 shows the results of the DNA chip: the cDNA produced from the mRNA of E. coli was labelled: the cDNA from the heat-treated was labelled with the Fluor chrome (Cy3) strain and the cDNA from the untreated was labelled with (Cy5) Fluor chrome strain. The two have different Fluor chrome excitation and emission wavelengths. Because the genes which shown in the table are fixed on the chip, the labelled cDNA can hybridize with their complementariness and the intensity of fluorescence is measured, the Intensity ratio is a measure of the expression of E. coli under the two culture conditions (50 $^{\circ}$ C and 37 $^{\circ}$ C).

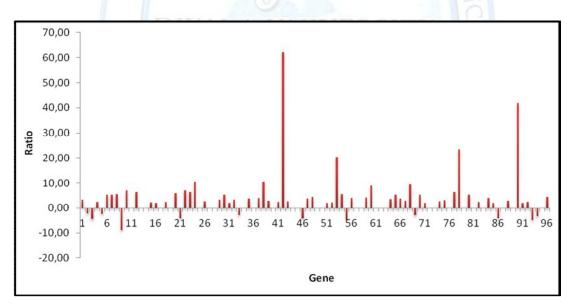


Figure 3.1 Expression profiles of E. coli under thermal stress

A ratio of 0.5 or corresponds to a two-fold under-expression or over-expression of the gene under stressful conditions (heat treatment). To obtain meaningful results, the values were

represented <1 as negative reciprocals. Only absolute values greater than 2 are considered to be representative and discussed in the following:

Nr		Ratio		
	ID Gene			
1	Chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins; dnaK			
2	ATP-binding component of sn-glycerol 3-phosphate transport system; ugpC	-2		
3	50S ribosomal subunit protein L10; rplJ	-4,38		
4	PTS system, N-acetylglucosamine-specific enzyme IIABC; nagE	2,42		
5	probable third cytochrome oxidase, subunit I; appC	-2,24		
6	nitrate/nitrite response regulator (sensor NarQ); narP	5,22		
7	fermentative D-lactate dehydrogenase, NAD-dependent; ldhA	5,21		
8	host factor I for bacteriophage Q beta replication, a growth-related protein; hfq	5,48		
9	orf, hypothetical protein; ybgF			
10	NADH dehydrogenase I chain F; nuoF			
11	tagatose-bisphosphate aldolase 1; gatY			
12	cytochrome o ubiquinol oxidase subunit II; cyoA			
13	putative ligase; yjfG			
14	superoxide dismutase, iron; sodB			
15	50S ribosomal subunit protein L4, regulates expression of S10 operon; rplD	2,31		
16	5 N-acetylglucosamine metabolism; nagD			
17	7 putative phosphatase; yrfG			
18	GroES, 10 Kd chaperone binds to Hsp60 in pres. Mg-ATP, suppressing its ATPase	2,41		
	activity mopB	2,71		
19	heat shock protein; ibpB			
20	phage lambda replication; host DNA synthesis; heat shock protein; protein repair;	5,88		
	grpE	-		

Table 3.1 Composition of the examined genes and their expression ratio

Vol: 10 No:2, April 2014

Transcriptional stress response of Escherichia coli bacteria to heat shock with micro array technique

Ahmad Nizamedien Barzingi

21	periplasmic protein involved in the tonb-independent uptake of group A colicins; tolB	-4
22	outer membrane porin protein; locus of qsr prophage; nmpC	
23	membrane-bound ATP synthase, F1 sector, alpha-subunit; atpA	
24	cytochrome d terminal oxidase, polypeptide subunit I; cydA	10,56
25	putative transport ATPase; yhiD	
26	16S pseudouridylate 516 synthase; rsuA	2,77
27	50S ribosomal subunit protein L3; rplC	
28	mechanosensitive channel; mscL	
29	IS186 hypothetical protein; yi81_1	3,28
30	GroEL, chaperone Hsp60, peptide-dependent ATPase, heat shock protein; mopA	5,3
31	heat shock protein; ibpA	2,09
32	cell division protein; ftsJ	3,26
33	2-oxoglutarate dehydrogenase (dihydrolipoyltranssuccinase E2 component); sucB	
34	methylglyoxal synthase; mgsA	
35	galactitol-specific enzyme IIA of phosphotransferase system; gatA	3,86
36	orf, hypothetical protein; b1824	
37	putative transport system permease protein; yhfT	4,06
38	30S ribosomal subunit protein S16; rpsP	10,47
39	50S ribosomal subunit protein L2; rplB	2,88
40	heat shock protein, chaperone, member of Hsp70 protein family; hscA	
41	orf, hypothetical protein; yhfY	2,43
42	delta(2)-isopentenylpyrophosphate tRNA-adenosine transferase; miaA	62,14
43	heat shock protein, integral membrane protein; htpX	
44	44. chaperone with DnaK; heat shock protein; dnaJ	
45	2-oxoglutarate dehydrogenase (decarboxylase component); sucA	
46	internal control	-4,1
47	fumarate reductase, anaerobic, membrane anchor polypeptide; frdD	3,7

Vol: 10 No:2, April 2014

48	membrane-bound ATP synthase, F1 sector, delta-subunit; atpH	
49	orf, hypothetical protein; yhaL	
50	30S ribosomal subunit protein S7, initiates assembly; rpsG	
51	D-ribulose-5-phosphate 3-epimerase; rpe	2,03
52	coproporphyrinogen III oxidase; hemF	2,28
53	putative EC 2.1 enzymes; ycjX	20,38
54	multiple antibiotic resistance; transcriptional activator of defense systems; marA	5,49
55	heat shock protein hslVU, proteasome-related peptidase subunit; hslV	-4,55
56	DNA biosynthesis; DNA primase; dnaG	3,99
57	phosphoenolpyruvate carboxykinase; pckA	
58	PTS enzyme IIAB, mannose-specific; manX	
59	fumarate reductase, anaerobic, membrane anchor polypeptide; frdC	4,31
60	membrane-bound ATP synthase, F1 sector, gamma-subunit; atpG	
61	orf, hypothetical protein; yfjA	
62	50S ribosomal subunit protein L30; rpmD	
63	bifunctional pyrimidine deaminase/reductase in pathway of riboflavin synthesis; ribD	
64	GTP-binding export factor binds to signal sequence, GTP and RNA; ffh	3,61
65	orf, hypothetical protein; yccV	5,29
66	DNA-binding, ATP-dependent protease La; heat shock K-protein; lon	3,76
67	heat shock protein hslVU, ATPase subunit, homologous to chaperones; hslU	3
68	heat shock protein; clpB	
69	NADH dehydrogenase I chain M; nuoM	
70	isocitrate dehydrogenase, specific for NADP+; icdA	
71	formate dehydrogenase-O, major subunit; fdoG	
72	membrane-bound ATP synthase, F1 sector, beta-subunit; atpD	1
73	putative amino acid/amine transport protein; yean	

Vol: 10 No:2, April 2014

74	50S ribosomal subunit protein L23; rplW	2,65	
	UDP-D-galactose:(glucosyl)lipopolysaccharide-1,6- D-galactosyltransferase; rfaB		
75			
76	sodium-calcium/proton antiporter; chaA		
77	putative ATP-binding component of a transport system; ybjZ	6,39	
78	chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins; dnaK	23,42	
79	heat shock protein hslJ; hslJ		
80	orf, hypothetical protein; b1541	5,36	
81	NADH dehydrogenase I chain L; nuoL		
82	serine hydroxymethyltransferase; glyA	2,53	
83	cytochrome o ubiquinol oxidase subunit III; cyoC		
84	pyruvate dehydrogenase (decarboxylase component); aceE		
85	putative oxidoreductase; ydfI	2,06	
86	50S ribosomal subunit protein L18; rplR		
87	NADH dehydrogenase I chain J; nuoJ		
88	orf, hypothetical protein; b3000	3,02	
89	putative ATP-binding protein in pho regulon; ybeZ		
90	Arabidopsis Control Oligonucleotide		
91	DNA polymerase III, chi subunit; holC		
92	arginine 3rd transport system permease protein; artQ		
93	NADH dehydrogenase I chain H; nuoH		
94	putative tagatose 6-phosphate kinase 1; gatZ		
95	cytochrome o ubiquinol oxidase subunit I; cyoB		
96	membrane-bound ATP synthase, F1 sector, alpha-subunit; atpA	4,37	

Table 3.2 Summary of some over expressing genes of E. coli by heat shock

Genname	Proteinname	Funktion
dnaK	chaperone Hsp70; DNA	Plays an essential role in the initiation of phage lambda DNA
	biosynthesis; autoregulated	replication, where it acts in an ATP-dependent fashion with the dnaJ
	heat shock proteins; dnaK	protein to release lambda O and P proteins from the preprimosomal
		complex. DnaK is also involved in chromosomal DNA replication,
		possibly through an analogous interaction with the dnaA protein.
		Also participates actively in the response to hyperosmotic shock [4]
nagE	PTS system, N-	The phosphoenolpyruvate-dependent sugar phosphotransferase
	acetylglucosamine-specific	system (sugar PTS), a major carbohydrate active -transport system,
	enzyme IIABC; nagE	catalyzes the phosphorylation of incoming sugar substrates
	25/15	concomitantly with their translocation across the cell membrane.
	S	This system is involved in N-acetylglucosamine transport. [6]
narP	nitrate/nitrite response	This protein activates the expression of the nitrate reductase
	regulator (sensor NarQ); narP	(narGHJI) and formate dehydrogenase-N (fdnGHI) operons and
	DIVA	represses the transcription of the fumarate reductase (frdABCD)
	DIIA	operon in response to a nitrate/nitrite induction signal transmitted by
		either the narX or narQ proteins.[7]
nuoF	NADH dehydrogenase I	NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur
	chain F; nuoF	(Fe-S) centers, to quinones in the respiratory chain. The immediate
	chain F; nuoF	electron acceptor for the enzyme in this species is believed to be
	T Dr.	ubiquinone. Couples the redox reaction to proton translocation (for
	AND.	every two electrons transferred, four hydrogen ions are translocated
	L.	across the cytoplasmic membrane), and thus conserves the redox
		energy in a proton gradient.
cyoA	cytochrome o ubiquinol	Cytochrome o terminal oxidase complex is the component of the
	oxidase subunit II; cyoA	aerobic respiratory chain of E.coli that predominates when cells are
		grown at high aeration.[14]
rplD	50S ribosomal subunit protein	One of the primary rRNA binding proteins, this protein initially
	L4, regulates expression of	binds near the 5'-end of the 23S rRNA. It is important during the
	S10 operon; rplD	early stages of 50S assembly. It makes multiple contacts with
		different domains of the 23S rRNA in the assembled 50S subunit

mopB	GroES, 10 Kd chaperone	Binds to Cpn60 in the presence of Mg-ATP and suppresses the
	binds to Hsp60 in pres. Mg-	ATPase activity of the latter
	ATP, suppressing its ATPase	
	activity; mopB	
atpA	membrane-bound ATP	Produces ATP from ADP in the presence of a proton gradient across
	synthase, F1 sector, alpha-	the membrane. The alpha chain is a regulatory subunit.
	subunit; atpA	
cydA	cytochrome d terminal	Cytochrome d terminal oxidase complex is the component of the
	oxidase, polypeptide subunit	aerobic respiratory chain of E.coli that predominates when cells are
	I; cydA	grown at low aeration.
rsuA	16S pseudouridylate 516	Responsible for synthesis of pseudouridine from uracil-516 in 16S
	synthase; rsuA	ribosomal RNA[12]
mopA	GroEL, chaperone Hsp60,	Prevents misfolding and promotes the refolding and proper
	peptide-dependent ATPase,	assembly of unfolded polypeptides generated under stress
	heat shock protein; mopA	conditions.
	DIYA	Essential for the growth of the bacteria and the assembly of several
		bacteriophages. Also plays a role in coupling between replication of
	15	the F plasmid and cell division of the cell.
ibpA	heat shock protein; ibpA	Associates with aggregated proteins, together with ibpB, to stabilize
	Z	and protect them from irreversible denaturation and extensive
	TY IN	proteolysis during heat shock and oxidative stress. Aggregated
	TE A UNIT	proteins bound to the ibpAB complex are more efficiently refolded
	· VE	and reactivated by the ATP-dependent chaperone systems clpB and
		dnaK/dnaJ/grpE. Its activity is ATP-independent[13]
ftsJ	cell division protein; ftsJ	Specifically methylates the uridine in position 2552 of 23S rRNA in
		the fully assembled 50S ribosomal subunit
yhfT	putative transport system	Integral Membrane Protein
	permease protein; yhfT	
rpsP	30S ribosomal subunit protein	In addition to being a ribosomal protein, S16 also has a cation-
	S16; rpsP	dependent endonuclease activity

miaA	delta(2)-	Catalyzes the first step in the biosynthesis of 2-methylthio-N6-
	isopentenylpyrophosphate	(delta(2)-isopentenyl)-adenosine (MS[2]I[6]A) adjacent to the
	tRNA-adenosine transferase;	anticodon of several tRNA species. [17]
	miaA	
htpX	heat shock protein, integral	Membrane-localized protease able to endoproteolytically degrade
	membrane protein; htpX	overproduced SecY but not YccA, another membrane protein. It
		seems to cleave SecY at specific cytoplasmic sites. Does not require
		ATP. Its natural substrate has not been identified. Probably plays a
	-TIP	role in the quality control of integral membrane proteins. [18]

Table 3.3 Summary of some down expressing genes of E. coli with heat stress

Genname	Proteinname	Funktion
ugpC	ATP-binding component of	Part of the ABC transporter complex ugpABCE
	sn-glycerol 3-phosphate	involved in sn-glycerol-3-phosphate import.
	transport system;	Responsible for energy coupling to the transport system.
		Can also transport glycerophosphoryl diesters.
	2	Activated by gluconate, inhibited by fumarate and
	THE A	internal phosphate. Internal phosphate may bind to
	E.	UgpC and reduce its affinity for UgpA and UgpE. [25]
rplJ	50S ribosomal subunit protein	Protein L10 is also a translational repressor protein. It
	L10	controls the translation of the rplJL-rpoBC operon by
		binding to its mRNA
appC	probable third cytochrome	Probable cytochrome oxidase subunit
	oxidase, subunit I;	
ybgF	orf, hypothetical protein; ybgF	Uncharacterized protein ybgF precursor
tolB	periplasmic protein involved	Involved in the tonB-independent uptake of group A
	in the tonb-independent uptake	colicins (colicins A, E1, E2, E3 and K). Necessary for
	of group A colicins; tolB	the colicins to reach their respective targets after initial
		binding to the bacteria

sucB	2-oxoglutarate dehydrogenase	The 2-oxoglutarate dehydrogenase complex catalyzes
	(dihydrolipoyltranssuccinase	the overall conversion of 2-oxoglutarate to succinyl-
	E2 component); sucB	CoA and CO(2). It contains multiple copies of three
		enzymatic components: 2-oxoglutarate dehydrogenase
		(E1), dihydrolipoamide succinyltransferase (E2) and
		lipoamide dehydrogenase (E3).
hslV	heat shock protein hslVU,	Protease subunit of a proteasome-like degradation
	proteasome-related peptidase	complex
	subunit; hslV	PU
rplR	50S ribosomal subunit protein	This is one of the proteins that mediates the attachment
	L18; rplR	of the 5S rRNA subcomplex onto the large ribosomal
	5	subunit where it forms part of the central protuberance.
		Binds stably to 5S rRNA; increases binding abilities of
	DIVATA	L5 in a cooperative fashion; both proteins together
	DIIALF	confer 23S rRNA binding. The 5S rRNA and some of
		its associated proteins might help stabilize positioning
	2	of ribosome-bound tRNAs. [26]
gatZ	D-tagatose-1,6-bisphosphate	Component of the tagatose-1,6-bisphosphate aldolase
	aldolase subunit GatZ	GatYZ that is required for full activity and stability of
	INT.	the Y subunit. Could have a chaperone-like function for
	ERS	the proper and stable folding of GatY. When expressed
	Torol	alone, GatZ does not show any aldolase activity. Is
		involved in the catabolism of galactitol. [27]

Discussion

Temperature is one of many environmental conditions, which can be measured by bacteria precisely. However, most systems do not register the temperature sensor, but respond to immediate consequences of a change in temperature, for example, to the accumulation of unfolded proteins to a heat shock RNA thermometers, however, are temperature controlled mRNA sensors, measure the thermal signal directly and implement them in gene expression. RNA to form complex structures which control access to the ribosome binding site (RBS). In most cases, the translation will be prevented at low temperatures. Increasing the temperature leads to the melting of the structure, thereby exposing the RBS and translation is enabled. [3] The bacteria detect elevated temperature using a molecular thermometer. The alternative σ factor σ 32, which is encoded by the rpoH gene in the establishment of the heat shock response, plays a central role. The rpoH mRNA is pronounced secondary structure at low temperatures of, in which the initiation code and the ribosome binding site (RBS) are not accessible. Don't bind the ribosome, there is no translation instead. When the heights temperature dissolves secondary structure, the RBS is available for translation, and the content of protein σ 32 increases. The stabilization of the protein σ 32 is especially important in the heat shock. The key is dnak -chaperone that performs two functions; it is involved in the renaturation of the denatured proteins, in the heat shock protein binds denatured dnak together with the DnaJ and GrpE chaperone machinery. dnak is caught in this way, does not bind to σ 32, and can not thus infiltrate into the Proteolysis cycle. This is the case when there is no heat shock. Then you bind to σ 32 and destabilize the protein. σ 32 serves as a substrate of the protease and is degraded FtsH. [28] In this study the gene expression of E. coli was examined by heat shock. It observed that classes of proteins or genes were over expressed by heat. The HSPs (heat shock proteins). These have large homologies in amino acid sequence and function. That are named and classified according to their molecular weight and also be induced by transcriptional activator σ 32. Among the HSPs-70 (70 kDa) and HSPs-90 (90 kDa), for example, include the examined proteins in this study DnaK, DnaJ (70 kDa) and GrpE (90 kDa). HSPs most of either a chaperone function such as (DnaK, DnaJ, GrpE, IbpA,

IbpB) or a proteolytic function (such as HPTx). Chaperones are proteins that help newly synthesized proteins to fold correctly. The name was chosen because they preserve immature proteins from harmful contact. In stressful situations it comes to increased denaturation of proteins. Denatured proteins are a signal for increased formation of chaperone protein, proteolysis also another property of proteins to remove the misfolded proteins. Typically the heat shock response in *E*. coli is of the induction of proteases, its overproduction leads to degradation. HPTx is a protein which has such properties and is especially over expressed in the experiment. The heat shock proteins at 37 ° C less than ribosomal proteins (RPID, RPSG, RPMd, RPIC, RPIB, and RPIW) expressed or proteins that play a role in the respiratory chain (CyoB, CYDA, CyoB, or NuoM) and the generally reflect the normal growth of the cell. The dnaJ, IbpA both heat shock proteins have not been over-expressed in 50 ° C, although having a chaperone function and playing a role in the heat shock response.

Reference

- Wagner V and Wechsler D Nanobiotechnologie II: Anwendung in der Medizin und Phamazie Technologieanalyse Zukünftige Technologien Nr. 50 Zuküngtige Technologien Consulting der VDI Technologiezentrum GmbH (2004), ISSN 1436-5026
- Frank Stahl Institut f
 ür Technische Chemie der Universit
 ät Hannover, Analyse der Genregulation DNA-Chiptechnologie. 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Narberhaus F, structure and function of bacterial RNA Thermometer, Department of Microbial Biology, Ruhr-University Bochum; Bispektrum.2/06
- Freestone P., Grant S., Toth I.and Norris V. Identification of phosphoproteins in Escherichia coli. "Mol. Microbiol. 15:573-580(1995) [PubMed] [Europe PMC] [Abstract]
- Wu B., Wawrzynow A., Zylicz M., Georgopoulos C. "Structure-function analysis of the Escherichia coli GrpE heat shock protein." EMBO J. 15:4806-4816(1996) [PubMed] [Europe PMC] [Abstract]

- Daley D.O., Rapp M., Granseth E., Melen K., Drew D., von Heijne G "Global topology analysis of the Escherichia coli inner membrane proteome."Science 308:1321-1323(2005) [PubMed] [Europe PMC] [Abstract]
- Rabin R.S., Stewart V. "Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12." J. Bacteriol. 175:3259-3268(1993) [PubMed] [Europe PMC] [Abstract]
- Carmichael G.G., Weber K., Niveleau A., Wahba A.J. "The host factor required for RNA phage Qbeta RNA replication in vitro, Intracellular location, quantitation, and purification by poly adenylate -cellulose chromatography." J. Biol. Chem. 250:3607-3612(1975) [PubMed] [Europe PMC] [Abstract]
- Hajnsdorf E., Regnier P. "Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I." Proc. Natl. Acad. Sci. U.S.A. 97:1501-1505(2000) [PubMed] [Europe PMC] [Abstract]
- Sledjeski D.D., Whitman C., Zhang A. "Hfq is necessary for regulation by the untranslated RNA DsrA." J. Bacteriol. 183:1997-2005(2001) [PubMed] [Europe PMC] [Abstract]
- Brehmer D., Gaessler C., Rist W., Mayer M.P., Bukau B. "Influence of GrpE on DnaKsubstrate interactions." J. Biol. Chem. 279:27957-27964(2004) [PubMed] [Europe PMC] [Abstract]
- Wrzesinski J., Bakin A., Nurse K., Lane B.G., Ofengand J. "Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli." Biochemistry 34:8904-8913(1995) [PubMed] [Europe PMC] [Abstract]
- 13. Kuczynska-Wisnik D., Kedzierska S., Matuszewska E., Lund P., Taylor A., Lipinska B., Laskowska E. "The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology 148:1757-1765(2002) [PubMed] [Europe PMC] [Abstract]

- Stenberg F., Chovanec P., Maslen S.L., Robinson C.V., Ilag L., von Heijne G., Daley D.O. "Protein complexes of the Escherichia coli cell envelope." J. Biol. Chem. 280:34409-34419(2005) [PubMed] [Europe PMC] [Abstract]
- Freedman L.P., Zengel J.M., Archer R.H., Lindahl L. "Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and posttranscriptional regulation." Proc. Natl. Acad. Sci. U.S.A. 84:6516-6520(1987) [PubMed] [Europe PMC] [Abstract]
- Liberek K., Marszalek J., Ang D., Georgopoulos C., Zylicz M. "Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK." Proc. Natl. Acad. Sci. U.S.A. 88:2874-2878(1991) [PubMed] [Europe PMC] [Abstract]
- Moore J.A., Poulter C.D. " Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme." Biochemistry 36:604-614(1997) [PubMed] [Europe PMC] [Abstract]]
- Koonin E.V., Tatusov R.L., Rudd K.E. "Sequence similarity analysis of Escherichia coli proteins: functional and evolutionary implications." Proc. Natl. Acad. Sci. U.S.A. 92:11921-11925(1995) [PubMed] [Europe PMC] [Abstract]
- Luirink J., High S., Wood H., Giner A., Tollervey D., Dobberstein B. "Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex." Nature 359:741-743(1992) [PubMed] [Europe PMC] [Abstract]
- 20. Thomas-Wohlever J., Lee I. "Kinetic characterization of the peptidase activity of Escherichia coli Lon reveals the mechanistic similarities in ATP-dependent hydrolysis of peptide and protein substrates." Biochemistry 41:9418-9425(2002) [PubMed] [Europe PMC] [Abstract]
- Barnett M.E., Zolkiewska A., Zolkiewski M. "Structure and activity of ClpB from Escherichia coli. Role of the amino and carboxyl terminal domains." J. Biol. Chem. 275:37565-37571(2000) [PubMed] [Europe PMC] [Abstract]

- 22. Hurley J.H., Thorsness P.E., Ramalingam V., Helmers N.H., Koshland D.E. Jr., Stroud R.M. "Structure of a bacterial enzyme regulated by phosphorylation isocitrate dehydrogenase" Proc. Natl. Acad. Sci. U.S.A. 86:8635-8639(1989) [PubMed] [Europe PMC] [Abstract]
- Kobayashi N., Nishino K., Yamaguchi A. "Novel macrolide-specific ABC-type efflux transporter in Escherichia coli." J. Bacteriol. 183:5639-5644(2001) [PubMed] [Europe PMC] [Abstract]
- 24. Wissenbach U., Six S., Bongaerts J., Ternes D., Steinwachs S., Unden G. "A third periplasmic transport system for L-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport." Wissenbach U., Six S., Bongaerts J., Ternes D., Steinwachs S., Unden G. Mol. Microbiol. 17:675-686(1995) [PubMed] [Europe PMC] [Abstract]
- 25. Argast M., Ludtke D., Silhavy T.J., Boos W. "A second transport system for sn-glycerol-3-phosphate in Escherichia coli." J. Bacteriol. 136:1070-1083(1978) [PubMed] [Europe PMC] [Abstract]
- 26. Newberry V., Brosius J., Garrett R. "Fragment of protein L18 from the Escherichia coli ribosome that contains the 5S RNA binding site." Nucleic Acids Res. 5:1753-1766(1978) [PubMed] [Europe PMC] [Abstract]
- Nobelmann B., Lengeler J.W "Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism." J. Bacteriol. 178:6790-6795(1996) [PubMed] [Europe PMC] [Abstract].