Synthesis and Characterization of Novel Bidentate Ligand type NO and Its Complexes with (Co^{II}, Ni^{II},Cu^{II} and Zn^{II}).

Leqaa khalid Abdulkarim

Department of chemistry, College of Education, Ibn Al-Haitham, University of Baghdad, P.O. 4150, Adhamiyah, Baghdad, Iraq.

Abstract

The [2-aminobenzothiazole]was reacted with [2,4,6 triyhydroxy-acetophenon monohydrate] to give a new ligand [2-N-2,4,6-trihydroxyacetophenonyliden benzothiazole] [H₃L]. This ligand was reacted with metal ions (Co^{II} , Ni^{II} , Cu^{II} and Zn^{II}) in methanol as solvent with (1:2) metal : ligand ratio to give a series of new complexes with general formula [$M(H_2L)_2$],(where:M= Co^{II} , Ni^{II} , Cu^{II} and, Zn^{II}). All compounds were characterized by spectroscopic methods (I.R, U.V – vis,HPLC) atomic absorption, along with chloride content and conductivity measurements. According to the data of these measurements we suggested a tetrahedral geometry for (Co^{II} , Ni^{II} , Cu^{II} , and, Zn^{II}) complexes.

Introduction

Thiazoles are used for manufacturing biocides, fungicides , pharmaceuticals, and days, they are a class of organic compound related to azoles with a common thiazole functional group[1].2-aminobenzothiazole represent an important class of hetrocyclic compounds that have many applications in our life [2-5].Some of these are employed as herbicides[6]. Hetrocyclic compounds such as thiazoles are considered to be a good coordinated Ligands[7,8]. In this paper reports the synthesis and characterization of a new [2-N-2,4,6-trihydroxyacetophenonyliden benzothiazole] ligand [H₃L] which derived from the reaction of [2-aminobenzothiazole] and [2,4,6-trihydroxy- acetophenon monohydrate] and is their metal complexes with (Co^{II}, Ni^{II}, Cu^{II}, and, Zn^{II}).

Experimental

Reagents were purchased form Fluka and Redial – Dehenge chemical Co. I.R spectra were recorded as (KBr) discs using a Shimadzu 8300 FTIR spectrophotometer in the rang (4000 - 400) cm⁻¹. Electronic spectra of the prepared compounds were measured in the region (200-1100) nm for 10^{-3} M solution in (methanol) at 25^{0} C using a Shimadzu, 160 spectrophotometer with 1.000 ± 0.001 cm matched quartz cell.Metal contents of the complexes were determined by atomic absorption (A.A) techniqus a Shimadzu AA 680 G atomic absorption spectrophotometer.The Chloried contents for complexes was detrmined by potentiometric titration method on (686-titro processor-665),Dosinat-metrom Swiss. The (HPLC)chromatograms the complexes were obtained by using a Shimadzu 2020. Electrical conductivity measurements of the complexes were recorded at 25^{0} C in 10^{-3} M solutions of the sample in (methanol) as asolvent using a pw 9526 digital conductivity meter.

Synthesis of ligand [H₃L] :

A solution of [2,4,6 Triyhydroxy-acetophenon monohydrate](0.55 g,1 mmol) in (5ml) methanol and (2-4) drops of glacial acetic acid was added to a solution of [2-aminobenzothiazole] (0.45g,1 mmol) dissolved in (5ml) methanol in (100ml) round bottom flask. The mixture was allowed to refluxed for 4hrs, with stirring at room temperature. During which time a yellow solid material was collected by filtration ,dried under vacuum for 24hrs, to give [H₃L] as a yellow solid , yield (0.7g, 77%) m.p ($136 - 138^{0}$ C).

Synthesis of complexes: Synthesis of [Co (H₂L)₂](1) :

In(50ml) round bottom flask (0.098g,0.41mmol)of[CoCl₂.6H₂O] was dissolved in (5ml) mthanol .Asolution of (0.25g,0.83mmol) of [H₃L] in (5ml)and KOH (0.046g,0.83mmol) was added to the above mixture. The reaction was allowed to reflux for (2hrs). The greenish-blue precipetate formed which was filtered ,washed with (1ml) ether and dried to (0.35g,71%) of the title compound,m.p(255^{0} C)dec. (Table-1).

Synthesis of [Ni (H₂L)₂] (2),[Cu(H₂L)₂] (3)and [Zn (H₂L)₂](4) Complexes:-

The method used to prepare the complexes (2),(3)and(4) was similar to that mentioned in preparation of cobalt complex(1).(Table-1) stated weight of starting materials, % yield and some physical properties of the ligand and prepared complexes.

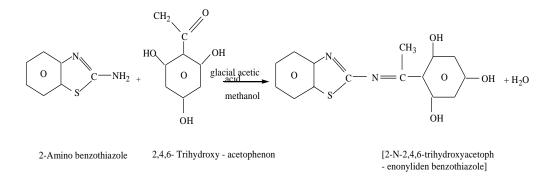

Compound	M.Wt g. mol ⁻	M.p ⁰ C (dec)	Color	Metal chloride salt	Weight of metal Chloride				Metal content	
					g	mmole	Weight of product (g)	Yield %	found (calcd.) %	chloride content
H ₃ L*	300	136-138	yellow	-	-	-	0.7	77	-	-
[Co(H ₂ L) ₂ **	655	255	greenish- blue	CoCl ₂ .6H ₂ O	0.096	0.41	0.35	71	9.96 (10.35)	nil
[Ni(H ₂ L) ₂]	656	278	Green	NiCl ₂ .6H ₂ O	0.097	0.41	0.31	63	9.54 (10.27)	nil
[Cu(H ₂ L) ₂]	661.5	249	yellow	CuCl ₂ .2H ₂ O	0.069	0.41	0.29	59	10.98 (11.36)	nil
[Zn(H ₂ L) ₂]	663	263	Yellowish -white	ZnCl ₂ .2H ₂ O	0.07	0.41	0.29	59	10.98 (11.36)	nil

Table (1): some physical properties of the ligand and its complexes and their reactants quantities.

* H₃L=C15H12N2O3S ** H₂L=C15H11N2O3S **Result and Discussion**

Synthesis of Ligand

The pro–ligand[H₃L] was prepared according to the general method shown in scheme (1). The (I.R) spectrum for [H₃L] ligand Fig. (2), displayed three bands at 3529,3452 and 3319 cm⁻¹ due to υ (O–H) stretching frequency for the hydroxyl groups ,on the other hand,a band at 1622 cm⁻¹ due to υ (C=N) stretching frequency for the imine groups[9],and aband at 748 cm⁻¹ assigned to υ (C=N) stretching frequency[10].(U.V-Vis) spectrum. Fig (3), shows one peak with a high intense absorption peak at (300) nm (33333 cm⁻¹) ($\varepsilon_{max} = 2049$ molar ⁻¹.cm⁻¹) which assigned to an overlap of ($\pi \rightarrow \pi^*$), (n $\rightarrow \pi^*$) electronic transitions[11].

Scheme (1) Synthesis route of the ligand [H₃L]

Synthesis of complexes

The synthesis of the complexes was carried out by the reaction of the ligand [H₃L] with [MCl₂.X H₂O] [where M= (Co^{II}, Ni^{II}, Cu^{II} and Zn^{II}), X=6 for Co^{II}, Ni^{II} and X=2 for Cu^{II} and Zn^{II}] in methanol under reflux. All complexes are stable in solution and electrolytes .The analytical and physical data (Table -1) and spectral data Table (2) and Table (3) are compatible with suggested structures Fig. (1). The (I.R) spectral data of the complexes are presented in (Table -2). In general the(I.R) spetra for all complexes revealed bands at rang (3533-3289) cm⁻¹ were attributed to v (O-H) stretching frequency. (I.R) spectra of the complexes (1), (2), (3) and (4) also displayed bands at 1632 cm^{-1} , 1635, 1630 cm^{-1} and 1636 cm^{-1} respectively which assigned to v (C=N) stretching for the imine groups[12]. These results showed that the bands of v (C=N) were shifted to highre frequencies in comparison with that of free ligand at 1622 cm⁻¹. These shifting can be attributed to delocalization of metal ion electronic density in to π -orbital of the ligand(π -system).Bands of ν (C-S) stretching at 748 cm⁻¹ for the free ligand did not change values that's mean the sulfer atom did not coordinated with metal ion [13]. The new bands at range(616–609) cm⁻¹ and (414– 420)cm⁻¹ are shown in Fig. (2a,2b,2c)and table-2 are assigned to v(M-N) and v(M-O)stretching respectively. These bands indicate that the nitrogen of imine group and oxygen are involved in coordination with metal ion [14-15]. The (U.V-Vis) spectra for all complexes shown in Fig.(3a,3b and 3c). The electronic spectral data for complexes are given in (table-3). The spectra show two intense peaks in the U.V region, the first at reang(277-300)nm and the second at range (341-343) nm for all complexes. These two peaks were assigned to ligand field and charge transfer transition respectively[16].Complex (1) exhibited peak at (833) nm which can be attributed to (d-d) electronic transition type $({}^{4}A_{2} \rightarrow {}^{4}T_{1})$ The weak peak in spectrum of complex (2) at (403) nm was assigned to (d-d) electronic transition type $({}^{3}T_{1} \rightarrow {}^{3}T_{1(P)})$. The spectrum of complexe(3) exhibited weak at (669)nm which can be attributed to (d-d) transition type $({}^{2}B_{2} \rightarrow {}^{2}E)$. The (d-d) electronic transition for the complexes (1),(2),(3) and (4) suggest tetrahedral configuration around Co^{II}, Ni^{II}, and Cu^{II} respectively [17]. The absence of absorption peak in the range(360-1000) nm for the spectrum of complexe (4) indicate no (d-d) electronic transition happened (d¹⁰-system) in visible region , that is agood result for Zn^{II} tetrahedral complexes [16]. The (HPLC) chromatograms for Co^{II} and Ni^{II} complexes (fig.4a,4b) (table-3) show one signal at $t_R=11.462$ and 5.894 min respectively, indicating the purity of the complexes and appear as a single species in solution. The molar conductances of the complexes in (methanol) solvent in 10⁻³M at 298K° (table-3) indicated non electrolytic nature [18-19] The (A.A) measurments and chloride content results for the complexes $[Co(H_2L)_2]$, $[Ni(H_2L)_2]$, $[Cu(H_2L)_2]$ and $[Zn (H_2L)_2]$, (table-1) are in a good agreement with the calculated values .

References

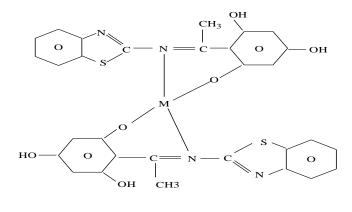
- 1. A.J.Arduengo, J.R.Goerlich and W.J.Marshall."A Stable Thiazol-2-ylidene and Its Dimer ".Liebigs Annalen 1997(2):365-374.
- 2. Ram, V.and Pandey, H.N. (1974). Chem. Pharm. Bull. 22, 2778.
- 3. Parmar, S.S.; Chaudhary, S.K.; Kumar, S.Spiro, H.R. (1977) J. Pharm. Sci (7):66,971
- 4. Mohan, J. (1983), Indian J. Chem., 22B270.
- 5. Maxwell, R.; Wasdahl, D.A.; Wolfson, A.C.; Stenberg, V.I. (1984)
- J.Med.Chem.,27,1967.
- 6. Abdul-Rahman,S.(2000),Engineering Journal e IslamicUniversity of Gaza.(1):13p35-95.
- 7. Rehab, A.M.; Ayad, H.jassim and Mouayed, Q.Al-Abachi (2003), National Journal of Chemistry, 9, 115-125.
- 8. Ahmed ,S.H;Modher,Y.M.and Salwa,A.Jabar(1999),IraqiJ.S.,40A,No.3,
- 9. G. Socrates " Infrared characteristic Group Frequencies " Wiley Inter science publication ... (1980)

10.Kumer A,Singh G,Handa RN,Dubey SN,Squattrio PJ,Synthesis and characterization of complexes of Cobalt(II),Nickel(II),Copper(II)and Zinc(II) with Schiff Bases Derived from Cinnamaldehyde and4–Amino–3– ethyl– 5–mercapto – s-triazol and 4– Amino–5–mercapto–3–N–propyl–s– iazole.Indian Journal of Chemistry.1999;38A:613.

11. W. Kemp " organic spectroscopy " 2nd Edition, (1987), 144

12.D. Hadzi, J. Chem. Soc., 1956,15,2725.

13. Sonmez, M.and Sekerci, M. (2000). Polish-J-Chem., 76, 907-914.


14. K. Nakamoto "Infrared spectra of Inorganic and coordination compounds" "4th. Ed. J. Wiely and son , New York , (1996)

15. J. Ferraro, "Low Frequency Vibrations of Inorganic and coordination compounds "plenum, New York (1971)

17. A.B. P.Lever, "Inorganic Electronic Spectroscopy " New York, (1968).

18. W.J. Geary, Coord .Rev., 1971, 7,81.

19. S.F.A.Kette, "Coordination Compounds Thomas nelson and sons,Londone p.165,(1975).

M=Co^{II},Ni^{II},Cu^{II} and Zn^{II}

Figure (1) The suggested structure for the complexes

Compound	υ (o-H) phenol	υ (C = N)	υ (C-N)	v (C-S)	υ (M – N)	υ(M-O)	Other bands
[H ₃ L]	3319 3452 3529	1622	1537	748	-	-	υ(C – H)aliph2987 υ (C – H)arom 3006
[Co(H ₂ L) ₂]	3307 3461 3533	1632	1529	74٩	613	419	υ(C – H)aliph 2929 υ (C – H)arom 3030
[Ni(H ₂ L) ₂]	3527 3456 3296	1635	1527	74٩	609	418	υ(C – H)aliph 2964 υ (C – H)arom 3066
[Cu(H ₂ L) ₂]	3519 3455 3289	1630	1530	70.	616	414	υ(C – H)aliph 2933 υ (C – H)arom 3047
[Zn(H ₂ L) ₂]	3533 3460 3292	1636	1525	74٩	615	420	υ(C – H)aliph 2918 υ (C – H)arom 3052

Table (2) I.R spectral data of the ligand and their metal complexes

Table (3) Electronic spectral data and conductance measurement of ligand and its complexes

Compound	λnm	Wave number Cm ⁻¹	Emax Molar Cm ⁻¹	Assignment	HPLC Min	$\begin{matrix} \Lambda \\ (\Omega^1.cm^2.Mole \\ \bar{m}^1) \end{matrix}$	
[H ₃ L]	300	33333	2049	$\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$	-	-	
[Co(H ₂ L) ₂]	300 343 833	33333 29154 12004	2215 1981 14	Ligand field C.T ${}^{4}A_{2} \rightarrow {}^{4}T1_{(F)}$	11.462	4.13	
[Ni H ₂ L) ₂]	300 341 403	33333 29325 24813	1520 1870 1784	Ligand field C.T ${}^{3}T_{1} \rightarrow {}^{3}T_{1(P)}$	5.894	9.6	
[Cu H ₂ L) ₂]	277 368 669	36101 27173 14947	1285 1766 8	Ligand field C.T ${}^{2}B_{2} \rightarrow {}^{2}E$	-	7.3	
[Zn H ₂ L) ₂]	299 342	33444 29239	1954 1955	Ligand field C.T	-	6.7	

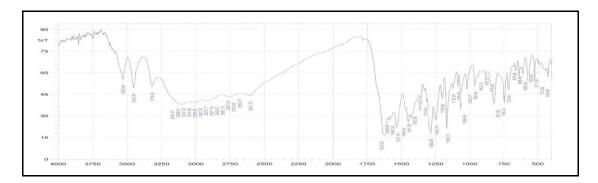


Fig.(2)The(I.R)spectrum of ligand [H3L]

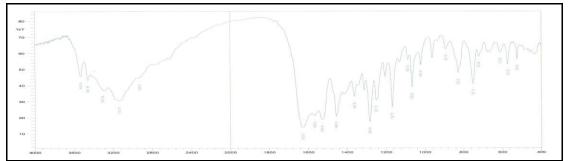
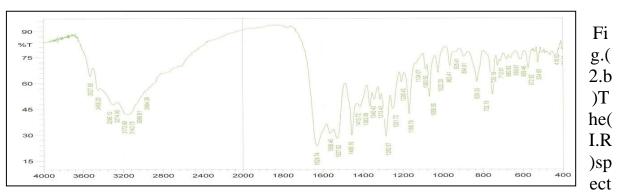



Fig.(2.a)The(I.R)spectrum of [Co(H₂L)₂]

rum of [Ni H_2L)₂]

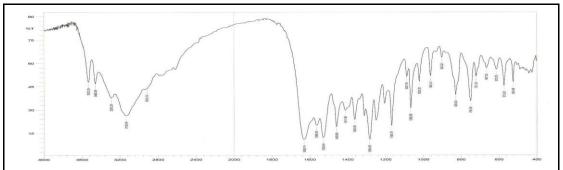


Fig.(2.C)The(I.R)spectrum of [Zn H₂L)₂]

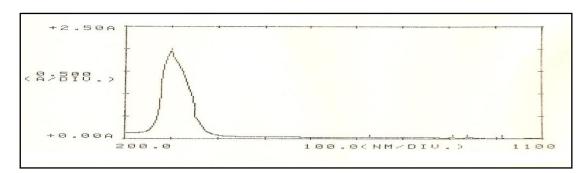


Fig.(3)The(UV - Vis) spectrum of ligand[H₃L]

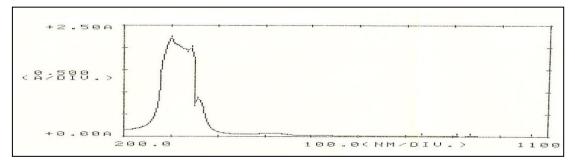


Fig.(3.a)The(UV - Vis) spectrum of [Co H₂L)₂]

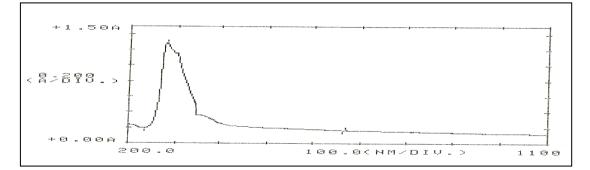


Fig.(3.b)The(UV - Vis) spectrum of [Cu H₂L)₂]

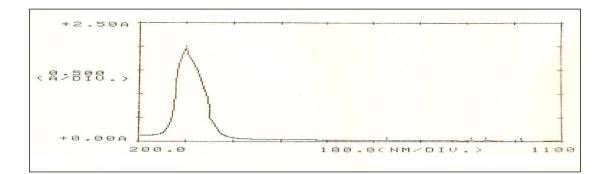


Fig.(3.C)The(UV - Vis) spectrum of [Zn H₂L)₂]

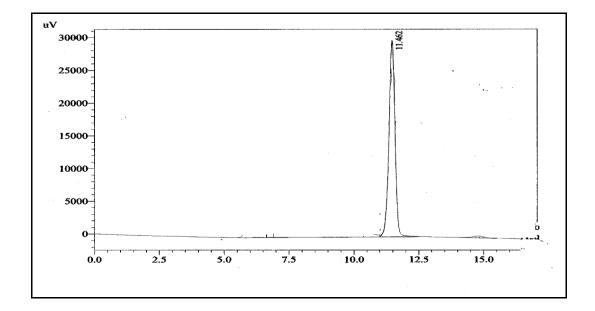


Fig (4a) .The HPLC chromatogram of the $[Co (H_2L)_2]$

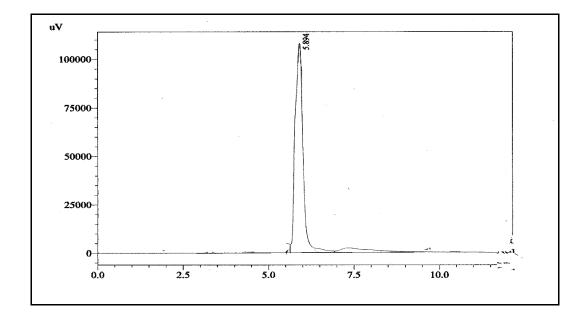


Fig (4b) .The HPLC chromatogram of the $[Ni (H_2L)_2]$

NO تحضير وتشخيص ليكاند ثنائي السن جديد نوع ومعقداته مع (Co ^(II), Ni ^(II),Cu^(II) and Zn ^{(II}))

لقاء خالد عبدالكريم

جامعة بغداد كلية التربية ابن الهيثم قسم الكيمياء العراق – بغداد - الاعظمية P.O.4150

الخلاصة:

تضمن البحث تحضير الليكاند ثنائى السن الجديد

[H₃L] [H₃L] [H₃L] [H₃L] 2,4,6 triyhydroxy-acetophenon monohydrate مع 2-aminobenzothiazole وذلك من مفاعلة 2,4,6 triyhydroxy-acetophenon monohydrate وذلك من مفاعلة الليكاند مع ايونات (Co (II), Ni (II), Cu^(II) and Zn (II) بوجود KOH باستخدام الميثانول وسطا للتفاعل وينسبة (1:2) تكونت سلسلة من المعقدات الجديدة ذات الصيغة العامة :

 $[M (H_2L)_2]$

حيث

 $M = (Co^{(II)}, Ni^{(II)}, Cu^{(II)} and Zn^{(II)}$

شخصت جميع المركبات المحضرة بوساطة الأشعة تحت الحمراء والأشعة فوق البنفسجية – المرئية HPLC ومطيافية الامتصاص الذري للعناصر ومحتوى الكلور ودرجات الانصهار , مع قياس التوصيلية المولارية الكهربائية من معطيات التحليل فان الشكل الفراغى لجميع المعقدات هو رباعى السطوح.