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Abstract 

  in this paper, the two body problem equation in parabolic orbit in celestial mechanics is 

solved using new iterative method with quadratic convergence. Initial solution is suggested 

depending on the time , earth gravitational constant  and the angular distance  to be 

, . The proposed methods considerably to be improvement of 

Newton's method with less iteration are needed to reach the solution of two body problem in 

parabolic orbit.  

Keywords:  Parabolic orbit, Barker's formula, Two body problem, Iterative methods, Order 

of convergence, Astrophysics. 

 

Introduction 

The determination of the position and velocity in two-body orbits leads to the solution of 

transcendental equation commonly referred to as "Kepler's equation"  which relates the 

dependence of position in orbit with time. In classical analysis, the shape of theses two-body 

orbits is described through the use of conics and corresponding to each conic Kepler's 

equation has a different form. A useful quantity in classifying conics is a constant  called 

eccentricity [1-3]. In virtually every decade from 1650 to the present there have appeared 
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papers devoted to Kepler's problem and its solution [4,5,6,7,8]. One of the usual ways to 

Kepler's equation is by the mean of iterative algorithms [9,10]. Several numerical methods 

have been suggested and analyzed under certain conditions. These numerical methods have 

been constructed using different technique such as Laguerre algorithm [11], Baoubaker 

Polynomials Expansion Scheme [12], and Richardson [13], others can be found in [14-18] 

 

Properties of Parabolic Orbits 

 

If an object attains escape velocity, but is not directed straight away from the planet, then it 

will follow a curved path. Although this path does not form a closed shape, it is still 

considered an orbit. Assuming that gravity is the only significant force in the system, this 

object's speed at any point in the orbit will be equal to the escape velocity at that point. The 

shape of the orbit will be a parabola whose focus is located at the centre of mass of the planet. 

The parabola can be shown to be the limiting form of both the ellipse and hyperbola as ( ) 

tends to unity. Here Kepler's equation is [3] 

                                                    (1) 

where  

  =G.M. where G= universal gravitational constant and M=the solar mass of the two bodies, 

  is the semi-latus rectum or parameters , 

  called the true anomaly, is the angle between the radius vector and the direction of 

pericenter  or point of closest approach of the two bodies . 

As e approaches unity from either the hyperbola or ellipse approaches infinity . Define the  

variable  such that 

 

                                                                                                                     (2) 

Then   tends to 0 (if ). Hence from the following equation [1] 
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                                                                                           (3) 

It is easily verified that both B and approach unity 

 

we have 

                                                                                                   (4) 

using the fact that for parabolic motion 

                                                                  ,                                 (5) 

and that the root of Eq. (4) is 

                                                                                                                        (6) 

Then, substitution of Eq. (5) and Eq. (6) does indeed lead to Eq. (1). As a case in point; at 

pericenter ; hence                

                                     ,   ,    ,                                                     (7)    

therefore  Eq. (4) becomes  

                                                                                  (8) 

or  

                                                                                               

(9) 

which is Barker's formula. Therefore; as Y approaches to 0 , the hyperbolic and 

elliptic forms reduce to the parabolic form. 

where  is the time of perihelion passage. 

Define  by the equation 

                                                                                                                               (10) 

Let  hence, eq. (4) may be written as  

                                                                                                               (11) 
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Equations (9) and (11) are versions of Barker's equation, which has been extensively used in 

studies of the orbits of comets and is now used in Astrodynamics [1]. 

 

Two Step New Iterative Method 

     The objective of this section is based on suggesting a new iterative method for solving Eq. 

(11) as follows  

Rewrite Eq. (11) in the following form  

                                                                                                  (12) 

Now we suggest the following algorithm for solving Eq. (12)  

INPUT initial approximate solution  ,              

             tolerance  , maximum number of iterations . 

OUTPUT approximate solution .  

Step 1: Set  and . 

Step 2: While  do steps 3-5. 

Step 3: Calculate   

                                                                                                                  

                                                   ,       for   n= 0,1,2,…                       

Step 4: If  then OUTPUT (  and stop. 

Step 5: Set n=n+1; i=i+1 and go to Step 2. 

Step 6: OUTPUT. 

The convergence analysis of iterative technique given by the above algorithm will be 

discussed. 

Expanding  and  about  , to get 

 
then  

                                                                                   (13) 
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                                                                (14) 

where                       ,  and  

From Eqs. (13) and  (14), we have 

 

                                                                           (15) 

and                                                                (16) 

using Eq. (15) and (16), yields 

                                                                    (17) 

By Taylor's series, we have 

                                                             (18) 

and        

             (19)                                    

 

obtain  using Eqs. (14) and (19) 

Hence    

 

                                                                                   (20) 

   (21)                      

                                                       

                                                                

or 

                                                                                                         (22) 

Thus, we observe that the proposed algorithm  has quadratic order convergence. 
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Application of the new method to solve parabolic orbit equation 

     Apply the suggested algorithm to solve the parabolic orbit equation Eq. (11) , 

 with (time unit) ,   (angular distance unit) 

and . Using Eq. (10) to obtain  , (  ) that is , 

therefore; . Take the suggested initial solution  

,  , the numerical results for Eq. (11) for  0.05+ ;  0, 

1, 2,…15 to get the solution of  , are listed in the table (1)  

We take  as tolerance. The following criteria is used for estimating the zero 

 ,   

For convergence criteria, it was required that   the distance between two consecutive iterates 

was less than ,  represents the number of iterations and , the absolute value of the 

function. Also the computational order of convergence ( ) can be approximated using the 

formula [10] 
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Table (1) shows the results using Newton and presented methods for different values of 

 

 

No. 

of cases  Initial guess  

    

  NM   
Presented 

Method 

1 0.05 0.127544385656524 6 1.509e-010 1.76959 4 6.041e-011 1.58814 

2 0.1 0.255088771313047 5 1.430e-011 1.88283  4  7.579e-011 1.70040 

3 0.15 0.382633156969571 5 2.239e-013 51.9531  4 1.477e-009 1.81001 

4 0.2 0.510177542626094 5 2.106e-008 1.98779 4 2.675e-012 1.90395 

5 0.25 0.637721928282618 5 1.637e-011 31.9992  4 4.996e-015 1.97260 

6 0.3  0.765266313939141 5 9.992e-016 1.86088 4 2.779e-013 2.04079 

7  0.35  0.892810699595665 5 3.335e-009 41.9922  4  3.272e-012 2.04649 

8  0.4  .1 020355085252188 5 3.297e-014 11.9758  4 9.992e-016 2.08068 

9  0.42  1.093237591341630 5 9.390e-013 1.96236 4 2.853e-009 2.09672 

10  0.45  1.147899470908712 5 7.367e-012 21.9505  4 9.519e-009 2.10663 

11  0.5  1.275443856565235 6 3.384e-010 31.9178  4 2.979e-013 4.85930 

12  0.55  1.402988242221759 6 6.199e-009 11.8797  4 5.195e-014 2.12553 

13  0.6  1.530532627878282 7 1.998e-015 61.8381  4 9.620e-013 2.11821 

14  0.65  1.658077013534806 7 7.794e-014 1.79494 4 1.123e-011 2.10115 

15  0.7  1.785621399191329 7 1.771e-012 1.75148 4 9.155e-011 2.07606 

16  0.75  1.913165784847853 7  5.496e-014 1.97411 4 9.992e-016 2.04483 
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Conclusions 

     The solution of two body problem in a parabolic orbit, where discussed where the true 

anomaly  (as a function of the time) can be obtained by solving a cubic equation for ) 

named Barker's formula. We have suggested and analyzed two step iterative method which 

works well for Barker's formula with suitable suggested initial solution for the iterative. We 

proved that the convergence of the new method is quadratic and showed that the proposed 

method provided that only the first derivative of the function exist, and it is not required to 

compute second or higher derivatives of the function to carry out iterations.  The results in 

table (1) demonstrated that the proposed two step method is better than Newton's method and 

we can see accuracy and efficiency of our two step method when compared with the Newton's 

method. Note that only four iterations are needed to reach the exact solution with small 

tolerance, while Newton's method requires five, six or seven iterations. 
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  محمد سھام رشید

  الجامعة التكنولوجیة

  قسم العلوم التطبیقیة

  العراق. - بغداد  - 35317ص.ب:  -الجامعة التكنولوجیة

o.commsr197575@yahoEmail:   

 

  الخلاصة

بأستخدام طریقة  تم حل مسألة جسمین متواجدین في مدار القطع المُكافيء في المیكانیك السماوي في ھذه البحث،         

 ، وثابت الجاذبیة الارضیة  تكراریة جدیدة ذات أقتراب تربیعي. تم أقتراح حل ابتدائي یعتمد على الزمن 

. الطریقة المُقترحة تعُتبر تحسین لطریقة نیوتن وتحتاج   , لیكون  والمسافة الزاویة 

  الى تكرارات أقل للوصول لحل مسألة الجسمین المتواجدین في مسار القطع المُكافيء.

  

  ین أثنین, الطرق التكراریة, رتبة الاقتراب، الفیزیاء الفلكیة.: المدار المكافىء, صیغة باركر, مشكلة جسمالكلمات المفتاحیة

  

  


