Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

IMPROVEMENT OF SOME SOFT CLAY SOIL PROPERTIES USING GEOPOLYMER MATERIALS

A THESIS SUBMITTED TO THE COUNCIL OF COLLEGE OF ENGINEERING, UNIVERSITY OF DIYALA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

By Abdalla Mohamed Shihab

Supervised by

Assist. Prof. Dr. Jasim Mohammed Abbas

September, 2018

IRAQ

Muharram, 1440

قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم

سورة البقرة

(الاية 32)

SUPERVISORS' CERTIFICATE

I certify that this thesis entitled "**Improvement of Some Soft Clay Soil Properties Using Geoplymer Materials**" was prepared by "**Abdalla Mohammed Shihab**" under my supervision in the University of Diyala in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering.

Signature:....

Name: Assist. Prof. Dr. Jasim M. Abbas, (Supervisor) Date: / /2018

COMMITTEE DECISION

We certify that we have read the thesis entitled (**Improvement of Some Soft Clay Soil Properties Using Geoplymer Materials**) and we have examined the student (**Abdalla Mohammed Shihab**) in its content and what is related with it, and in our opinion it is adequate as a thesis for the **Degree of Master of Science in Civil Engineering**.

Examination CommitteeSignature

1-	Assist.	Prof.	Dr. Jasim	М.	Abbas, (S	Supervi	isor)		• • • • •
2-					((Memb	er)		
3-					(Memb	er)		
4-					(Cha	airman)		
	Assit.	Prof	.Dr.Hafe	eth	Ibrahim	Naji	• • • • • • • • • • • • • •	. (Head	of
De	partme	ent)							

The thesis / dissertation was ratified at the Council of College of Engineering / University of Diyala.

Signature.....

Name:Prof.Dr.AbdulMonemAbbasKarimDean of College Engineering / University of Diyala

SCIENTIFIC AMENDMENT

I certify that the thesis entitled **"Improvement of Some Soft Clay Soil Properties Using Geoplymer Materials"** presented by **(Abdalla Mohammed Shihab)** has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature:

Name: Assist. Prof. Dr. Address: University of Engineering Department Date: / / 2018

LINGUISTIC AMENDMENT

I certify that the thesis entitled "Improvement of Some Soft Clay Soil Properties Using Geoplymer Materials" presented by (Abdalla Mohammed Shihab) has been corrected linguistically, therefore, it is suitable for debate by examining committee.

Signature:

Name: Assist. Prof. Dr.

Address: University of Diyala / College of Education for Human Sciences

Date: / / 2018

Dedication

То ...

God, The greatest truth in my life. My father spirit, the nice memory of my life My mother, the sight of my eyes. My wife, who supported me. Our honorable teachers who taught and rewarded us their knowledge. Everyone, who wishes me success in my life, I dedicate this humble work.

Abdalla

Acknowledgments

"In the Name of Allah, the most beneficent, the most merciful" First prise be to "Allah" who gave me the strength and health to work and enable me to finish this work.

I would like to express my sincere thanks to my supervisor Assist. Prof. Dr. Jasim Mohammed Abbas for his valuable advice, guidance, constructive criticism, cooperation and giving generously of his expansive time when help was needed through out the preparation of this study. I am greatly indebted to him.

I would also like to express my deep appreciation and sincere gratitude to Prof. Dr. Amer Mohammed Ibrahim the vice presedent of Diyala university who did not hesitate anytime to support me in my way to get the of master degree.

Appreciation and thanks are also extended to the all staff of Civil engineering department, and the staff of Soil mechanics Laboratory.

Thanks are also due to all my friends for their kindest help.

Finally, I would like to express my love and respect to my mother, my family, My brother, no word can express my gratitude to them.

Abdalla Mohamed Shihab

IMPROVEMENT OF SOME SOFT CLAY SOIL PROPERTIES BY GEOPLYMER MATERIALS

By

Abdalla Mohamed Shihab

Supervisor

Assist. Prof. Dr. Jasim M. Abbas

ABSTRUCT

In general, soil improvement by admixtures or simply (soil stabilization) is a common cost effective way to treat soft clay soils and overcome its undesirable behavior. In this way, this field have seen increasingly many attempts for finding the suitable soil admixtures.

The Geopolymers are innovative materials that illustrate good properties which were argued to overcome the other usual soil admixtures shortcomings. In order to develop the knowledge about the Geopolymer – soft clay strength and the consequent geotechnical performance, an experimental program was introduced, moreover, a considerable concern was conducted throughout this program to the temperature effects which can vary the properties of the resulting Geopolymers to a great extent.

The experimental program consists of main two parts to make a preliminary assessment of soft soil with this new admixture. The first part included the temperature effects on the mechanical strength of Geopolymer – soft clay mix that characterized by the unconfined compressive strength as well as the ductility and the stiffness that represented by failure strain and Young's modulus, respectively. While in the second part, some heated conditions was devoted to investigate some geotechnical properties like specific gravity, liquid and plastic limit, compaction characteristics and California bearing ratio. The microstructure of the treated soil was observed by the scanning electron microscope and the mineralogical changes

were detected by the X-ray powder diffraction using specific heating conditions. The percentage of source material used are 8, 10, 12, and 14 % by dry weight and the total liquid is 38 % which corresponds 4.75, 3.8, 3.167 and 2.714 liquid over fly ash used.

The experimental results showed that the optimum liquid over fly ash ratio with respect to peak unconfined compressive strength is 3.8 when the reported degree of improvement factor about 20.1. Ductility and stiffness were also enhanced considerably with degree of improvement of 3.5 and 8.7 respectively. It can be concluded also that the optimum temperature can vary according to the source material percent and nature.

The specific gravity and the maximum dry density decreased as the fly ash content increased whereas the optimum moisture content increased. The scanning electron microscope test illustrated the formation of the Geopolymer gel and the Xray powder diffraction analyses confirms the chemical composition of this gel represented by the potassium alominosilicat hydrate and sodium alominosilicat hydrate.

TABLE OF CONTENTS

Article	Detail	Pa
		ge
ABSTRACT		Ι
CONTENTS		III
LIST OF		VI
FIGURES		II
LIST OF		XI
PLATES		
LIST OF		XI
TABLES		Ι
LIST OF		XI
Abbreviation		V
S		
CHAPTER	INTRODUCTION	
ONE		
1.1	General	1
1.2	Soft Clay Soil	2
1.3	Geopolymers	4
1.4	Problem Statement	4
1.5	Importance of the Study	5
1.6	Objectives of This Study	5
1.7	Thesis Layout	6

CHAPTER	LITERATURE REVIEW	
TWO		
2.1	Introduction	7
2.2	Methods of Improving Soft Clay	7
	Properties	
2.3	Admixtures Soil Improvement	9
2.4	Admixtures Soil Improvement	10
	Agents	
2.4.1	Cement	10
2.4.2	Lime	12
2.4.3	Fly Ash	14
2.4.4	Silica Fume	15
2.4.5	Rice Husk Ash	16
2.4.6	Sugarcane Straw Ash	17
2.4.7	Tire Ash	19
2.5	Geoplymers Definition, Features	19
	and Motivation	
2.5.1	Geopolymerization Process	20
2.5.2	Materials of Geopolymers	21
2.5.2.1	Fly Ash	21
2.5.2.2	Sodium Hydroxide NaOH	22
2.5.2.3	Sodium Silicate Na ₂ SiO ₃	22

2.6	Applying	Heat	in	Geopolymers	22
				I J	

Cement

2.7	Soil – Geopolymer mixes	24
2.8	Literature Summary	27
CHAPTER	EXPERIMENTAL WORK	
THREE		
3.1	Introduction	31
3.2	Materials Used	31
3.2.1	Soil	31
3.2.2	Fly ash	33
3.2.3	Sodium Silicate Na ₂ SiO ₃	34
3.2.4	Sodium Hydroxide	35
3.2.5	Distilled Water	37
3.3	Preparation of Alkaline Solution	37
	for Geopolymers	
3.3.1	Preparing NaOH Solution	38
3.3.2	Adding Na ₂ SiO ₃ to NaOH Sulotion	38
3.4	Source Materials and Total Liquid	38
	Percent	
3.5	Sample Preparation	39
3.6	Mechanical Strength and	42
	Temperature Effects	
3.6.1	Failure Strain and Young's	44
	Modulus Assessment	
3.6.2	Soil pH	45
3.6.3	Shrinkage Observation	45
3.6.4	Remaining Moisture	47
3.7	Geotechnical Tests	47
3.7.1	Specific Gravity	47
3.7.2	Liquid and Plastic Limit	47

3.7.3	Compaction Test	48
3.7.4	California Bearing Ratio	48
3.7.5	SEM-Analysis (Scanning Electron	50
	Microscope)	
3.7.6	Mineralogical Analysis: X-Ray	50
	Powder Diffraction (XRD)	
3.8	Testing Program	51
CHAPTER FOUR	RESULTS AND DISCUSSION	
4.1	General	53
4.2	Temperature Effects to Mechanical	53
	Strength.	
4.2.1	Assessment of Peak Unconfined	54
	Compressive Strength	
4.2.1.1	Effect of Liquid over Fly Ash	54
	Ratio	
4.2.1.2	Effect of Initial Duration Time on	55
	the UCS	
4.2.1.3	Effect of Duration temperature to	57
	UCS	
4.2.2	Development of Failure Strain	59
4.2.3	Young's Modulus	63
4.2.4	Soil pH	67
4.2.5	Shrinkage Behavior	70
4.2.6	Remaining Moisture Observation	73
4.3	Investigation of Some Soft Clay -	76
	Geotechnical Properties	
4.3.1	Specific Gravity	76

4.3.2	Liquid and Plastic Limit	77
4.3.3	Compaction Test	78
4.3.4	California Bearing Ratio	79
4.3.5	Microstructure and Mineralogical	81
	Analysis	
4.3.5.1	Scanning Electron Microscope	81
	(SEM) – Energy Dispersive	
	Spectroscopy (EDS).	
4.3.5.2	X – Ray Powder Diffraction	83
	(XRD)	
CHAPTER FIVE	CONCLUSIONS AND RECOMMENDATIONS	
5.1	Conclusions	84
5.2	Recommendations for Future Work	85

TABLE OF FIGURES

No.	Title	Pa
		ge
2.1	Soil improvement techniques according	8
	to grain size ranges (after Mitchell, 1981)	
2.2	Stress-strain graphs from unconfined	11
	compressive strength tests(after Sarkar et al.,	
	2012)	
2.3	Relationships of plastic limit of lime-	13
	treated soil with curing time (after Sakr et	
	al., 2009)	
2.4	Compressive stress-strain curve for soil	16
	with different silica fume content(after Al -	
	Azzawi et al., 2012)	
2.5	Variation of UCS with rice husk ash	17
	content content (after Alhassan, 2008)	
2.6	Variation of CBR due to sugar crane	18
	addition (after Amu et al., 2011)	
2.7	Strength comparison of OPC, air cured	24
	and heat cured Geopolymer mortar (after	
	Adam and Horento, 2014).	
2.8	UCS results of alkaline activation	25
	mixtures with NaCl, CaO and concrete	
	superplasticiser additives (after Cristelo et	
	al., 2012)	
2.9	The influence of meta kaolin gel	29
	concentration to compressive strength (after	

	Zhang et al., 2013)	
2.10	UCS and Young modulus results at 28	27
	days for the 16 mixtures (after Rios et al.,	
	2016)	
2.11	Soil improvement techniques according	28
	to grain size ranges (after Fang and Daniels,	
	2006)	
3.1	Failure strain and Young's modulus	44
	evaluation (D24C90 for Group 2)	
3.2	Flow chart of laboratory program	52
4.1	Variation of peak UCS due to different	54
	Liquid over fly ash ratio for different	
	durations	
4.2	Variation of peak UCS due to different	56
	initial duration time for different liquid over	
	fly ash ratios	
4.3	Variation of of peak UCS due to	57
	increasing duration temperature for different	
	liquid over fly ash ratios	
4.4	Variation of failure strain due to	59
	different temperatures for initial duration	
	time	
4.5	Variation of of failure strain due to	61
	liquid over fly ash ratio for different	
	durations	
4.6	Variation of of failure strain due to	62
	different initial duration time for different	
	liquid of fly ash ratios	
4.7	Variation of Young's modulus due to	63

	initial duration time for different liquid over	
	fly ash ratios	
4.8	Variation of of Young's modulus due to	65
	different temperatures of initial durations	
4.9	Variation of of Young's modulus due to	66
	liquid over fly ash for different values of	
	initial durations	
4.10	Variation of soil pH due to duration	67
	temperatures for different liquid over fly ash	
	ratio	
14.1	Variation of pH level due to liquid over	68
	fly ash for different values of initial	
	durations	
24.1	Variation of pH due to different initial	69
	duration time at different liquid of fly ash	
	ratios	
34.1	Variation of soil volumetric strain due to	70
	duration temperatures for different liquid	
	over fly ash ratio	
4.14	Variation of volumetric strain due to	71
	different liquid over fly ash ratios for	
	different values of initial durations	
4.15	Variation of volumetric strain due to	72
	different initial time for different liquid of	
	fly ash ratios	
4.16	Variation of remaining moisture due to	73
	duration temperatures for different liquid	
	over fly ash ratio	
4.17	Variation of remaining moisture due to	74

	initial duration time at different liquid of fly	
	ash ratios	
4.18	Variation of remaining moisture due to	75
	different temperatures of initial durations	
4.19	Specific gravity of treated and treated	69
	soil for the proposed conditions	
4.20	Compaction diagram for natural and	78
	treated soil under the proposed conditions	
4.21	Variation of maximum dry density due	78
	to the proposed conditions	
4.22	Variation of optimum moisture content	79
	due to the proposed conditions	
4.23	Load penetration curve for natural soil	80
4.24	Load penetration curve for treated soil	80
	under the proposed conditions	
4.25	XRD pattern of Untreated soil and	85
	Group 2 D6C70.	

XI

TABLE OF PLATES

No.	Title	Pa
		ge
1.1	Failure of flexible pavement due to	2
	weak underlying soils	
2.1	Conceptual model for	21
	Geopolymerization (after Duxson et al.	
	2007).	
3.1	Natural soil location	32
3.2	Fly ash used in this study	34
3.3	Sodium silicate used in this study	35
3.4	Sodium hydroxide flakes used	37
3.5	The drying oven used	40
3.6	(a) UCS specimens. (b) Universal	43
	matest frame	
3.7	pH equipment used in the present study	45
3.8	Digital caliper used in the present study	46
3.9	Typical Liquid and plastic limit	47
	equipments	
3.10	Typical Compaction equipments	48
3.11	Typical CBR testing equipments	49
3.12	Typical SEM equipment	50
3.13	Typical XRD equipment	51
4.1	SEM images for Untreated soil, 5 μ m	74
4.2	SEM images (a) Group 2, D6C70, 10	75
	μm. (d) Group 2, D6C70, 20 μm.	

TABLE OF ABBREVIATIONS

Abbreviati	Total name
on	
ASTM	American Standard of Testing Measurements
CaO	Calcium Oxide
CBR	California Bearing Ratio
CSH	Calcium Silicate Hydrate
Cu	Undrained Shear Strength
EDS	Energy Dispersive Spectrotropy
FTIR	Fourier Transform Infrared Spectroscopy
KASH	Potassium Alominosilicate Hydrate
NASH	Sodium Alominosilicate Hydrate
OPC	Ordinary Portland Cement
SEM	Scanning Electron Microscope
UCS	Unconfined Compressive Strength
XRD	X – Ray Powder Diffraction

CHAPTER ONE

INTRODUCTION

1.1 General

In fact, soil improvement refers to any general action that can be done to the soil in order to enhance / control the general behavoir and / or some desired soil properties. Usually, this goal can be achieved by following common trends, for the first glance, the soil can be modified without any addition of any other materials, or some certain materials can be used to treat the problematic soils or inclusions can be provided to play the role of reinforcement agent. on the other hand, soil stabilization can be defined as a frequent and economic method to improve the properties of soil by using admixtures which is involving blending soil with suitable type of materials to render some of the target soil properties less sensitive to fluctuation or simply "stable". There are no clear differentiations between soil stabilization and improvement because of the overlap between the applications which dictates to use this two terms interchangeably (Murthy, 2007 and Nickolson, 2015).

Furthermore, this method can be considered as an effective technique as it results in non-water soluble soil matrix. However, admixtures like ordinary Portland cement (OPC), lime and high calcium fly ash and bitumen are widely used and examined to do this function (Swain 2015).

Geopolymers are binding gels that result from the alkali activated aluminisilicate sources which is excelled to be a suitable alternative to Portland cement as a primary binder, in this study, it is tries to investigate the effectiveness of using fly ash based geoplymers to treat soft clay soils.

1.2 Soft Clay Soil

1

Chapter One

Introduction

Usually, soft clay soils are very sensitive to the presence of water and illustrate a dramatic changes in its performance if water conent varies. In general, soft clay soils are stiff when dry and loss this property when become more wet. Leakage of sewer lines, floods, rains and lack of evaporation due to buildings or pavements are the poupular reasons of increasing mositure content in clayey soils (Firoozi et al., 2017). The consequent undesirable behavior of such soils causes considerable problems like fracture and cracking in pavements as shown in Plate 1.1

Plate 1.1 Failure of flexible pavement due to weak underlying soils (www.dailycivil.com)

In fact, the construction of buildings, highways and other structures may be dictated to be done over such type of soils, at the first sight, these soils have to be avoided as much as possible due to its inadequacy to be foundation ground because of its low bearing capacity. However, It is believed that there are some factors which must be taken into account when the decision of soft soil

Chapter One

Introduction

improvement are subjected to discussion like the degree of stabilization required, site conditions and cost effectiveness (Ibrahim et al., 2014).

As a matter of fact, There is no clear definition for the term "soft soil", usually, it can be can be identified by high water content (40-60) % (Broms, 1990) which may equal or higher than its liquid limit or it can be defined as the normally or lightly over consolidated which have liquidity index greater than 0.5 and possess un drained shear strength c_u usually less than 10 kPa according to Terzaghi, 1936 (as cited by Brand Brenner, 1981). In addition, as suggested by Brand and Brenner, 1981, such type of soil can be identified by c_u less than 40 kPa.

British Standard (B.S: C.P 8004: 1986), defined a soil as soft if its C_u ranged between 20 to 40 kPa while the term very soft referred to soil with $c_u < 20$ kPa.

Kamon and Bergado, 1991 (as cited by Bergado et al., 1996) stated that for clayey soils, the softness of the ground can be assessed by its c_u , or by its unconfined compression strength (UCS), soft soils are considered very soft when UCS is less than 25 kPa and soft if between 25 and 50 kPa (Terzaghi and Peck, 1967).

In fact, the presence of soft clays in Iraq are concentrated in central and southern parts (Al Jubouri, 2013), C_u to about 30 kPa was reported in Basrah and 40 kPa or less in Maysan and Dhi Qar governorates. Random surveys show that compression indeces are of approximately 0.3 and clay fraction between 50 % and 70 % (Buringh, 1960). Therefore, high water table level in the Iraqi southern basins revealed poor soft deposits (Abbawi,2010). Textures of those soils consist of fine silty clay loams.

1.3 Geopolymers

The reaction of the materials which have alominisilicate such as red mud, fly ash, meta kaolin and rice husk ash by alkaline solutions produces binding gels called Geopolymers (Davidovits, 1988). These innovative materials appears to be promising alternatives to the OPC and other common soil stabilizers due to its good mechanical properties and sustainable nature.

Additionally, Geopolymers can be used in numbers of field applications likes precast units, pavement, bricksetc (Aldred and Day, 2012). Generally Geopolymer gel has a technical advantageous over the traditional cement common binding gels like high mechanical strength development, ability to gain strength rapidly, high chemical resistance, sulfate attack and cost effectiveness.

Many source material can be used as alominosilicate source such as fly ash, meta kaolin, rise husk ash, slagetc.

1.4 Problem Statement

Actually, the industry of OPC emits 10% of carbon dioxide around the world (Khedary et al. 2005), furthermore, when lime and high calcium fly ash and/or calcium based additives are used, the formation of ettringate and thaumasite is possible due to the sulfate attack (Firoozi et al., 2017) which dictates strength loss with respect to its long term performance. Bitumen has many problems including deterioration with age, drying and failure due to repeated load.

It is evident that there is a considerable lack of information about soil – Geopolymer applications (Singhi et al., 2016) which motivates to develop this field by scientific research programs.

1.5 Importance of the Study

In many flexible and rigid pavements surface layers failure records, it can be recognized that the subgrade and or other bottom layers failure is the main source of such hazard.

In this way, using admixtures in road ways layers design is very usefull for many purposes like cost savings in materials used through reduction in the thickness required for each layer, reducing mainainance and enhancing the deterioration rate of the upper pavment layer. For that reason, it is needed to seek for new admixtures that can play the desired role and overcome the shortcomings of the common stabilizers.

Therefore, this study tries to improve the knowledge about the soil Geopolymers application through an experimental program.

1.6 Objectives of This Study

The basic aim of this study is to investigate the effect of using fly ash based Geopolymer as an admixture on soft clay mechanical strength and some relevant geotechnical properties taking into account some of the most important key elements that govern the production of Geopolymers gels.

In order to achieve the basic aim of this study, the experimental program is divided into two general main parts:

- *Part one:* comprises a parametric study to understand the effect of temperature on soil Geopolymer mix in term of mechanical strength.
- *Part two:* comprises an investigation to the effect of Geopolymer on some geotechnical properties using certain soil

-Geoppolymer conditions concluded in part one.

1.7 Thesis Layout

The general layout of this study consists of five chapters as explained below:

Chapter one: Presents a brief introduction of the problem and geopolymers demonstrating the importance, aim and objectives of the study.

Chapter Two: Presents a background depending on the literature re view of the recent studies.

Chapter Three: Presents the experimental works describing the laboratory testing and chemical analysis covered in this study.

Chapter Four: Shows the presentation of results recorded in this study and a brief discussion.

Chapter Five: Contains the conclusions and recommendations based on testing results.