

Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Veterinary Medicine

Serological and Molecular Detection of H5N8 Influenza Virus in Layer Hens in Diyala Governorate

A Thesis

Submitted to the Council of the College of Veterinary Medicine/ University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Veterinary Microbiology

By

Zainab Abd Awan Hama

B.V.M.S.

University of Diyala

Supervised by

Prof.Dr

Amer Khazaal Salih Al-Azzawi

2022 A.D.

1444 A.H.

دسم الله الرحمن الرحيم أَمَّنْ هُوَ قَانِتٌ آَنَاءَ اللَّيْلِ سَاجِدًا وَقَائِمًا يَدْذَرُ الْآخِرَةَ وَيَرْجُو رَحْمَةَ رَبِّهِ 🖥 قُلْ هَلْ يَسْتَهِي الَّخِينَ يَعْلَمُونَ وَالَّذِينَ لَا يَعْلَمُونَ اللَّهِ إِنَّمَا يَتَخَكَّرُ أُولُو الأَلْبَابِ { 9 } حدق الله العلي العظيم

سورة الزمر الاية {9}

Supervisor Certification

I certify that the thesis entitled (Serological and Molecular Detection of H5N8 Influenza Virus in Layer Hens in Diyala Governorate) was prepared by (Zainab Abd Awan Hama) under our supervision at the Department of Microbiology, College of Veterinary medicine, University of Diyala, as a partial fulfillment of the requirements for the Master Degree of Science in Veterinary Medicine -Microbiology.

Prof. Dr. Amer Khazaal Salih Al-Azzawi College of Veterinary Medicine University of Diyala / / 2022

In view of the valuable recommendation, we forward this thesis for debate by the examining committee.

Assist. Prof. Dr. Khalid Ibrahim Abd AL-Khazraji

Vice Dean of Postgraduate Studies and Science Affairs College of Veterinary Medicine University of Diyala

/ / 2022

Examination committee certification

We, the examination committee, certify that the entitled thesis "Serological and Molecular Detection of H5N8 Influenza Virus in Layer Hens in Diyala Governorate" by Zainab Abd Awan Hama has been examined and read through all of its contents and related topics. The committee recommends that the student passed and awarded the degree of Master of Science in Veterinary Medicine (Veterinary Microbiology).

Prof. Dr. Ismail Ibrahim Latif (Chairman)

/ / 2022

Asst. Prof Dr. Hadeel Mohammed Fayyadh (Member) Lecturer. Dr. Aws EL-Muntaser Hussein (Member)

/ 2022

/

/ / 2022

Prof. Dr. Amer Khazaal Salih Al-Azzawi (Member and Supervisor)

/ /2022

Prof. Dr. Amer Khazaal Salih Al-Azzawi Head of department of Microbiology Asst.Prof. Dr Khalid Ibrahim Abd AL-Khazraji Dean of College of Veterinary Medicine Diyala University

/ /2022

/ /2022

Dedication

To the one who encouraged me to persevere all my life, to the most prominent man in my life

(Dear father)

To the one in whom I rise, and upon whom I rest, to the giving heart

(My beloved mother)

To the one who made the effort to help me and was the best support

(My dear husband)

To the places of my liver, my daughter **Lugain** and my son **Mujtaba**

to my friends and colleagues...

To everyone who contributed even a letter to my academic life...

To all of them: I dedicate this work, which I ask Allah Almighty to accept sincerely...

Zainab Abd Awan

Acknowledgments

Praise be to Allah, Lord of the Worlds, and prayers and peace be upon the most honorable prophets and messengers, our master Muhammad, his family and companions, and those who followed them in goodness until the Day of Judgment, and after.

I thank Allah Almighty for His bounty as He allowed me to accomplish this work by His grace, to Him be praised first and foremost.

Then I thank those good people who helped me during this period, foremost among them is my professor supervising the thesis, His Eminence **Prof. Amer Khazaal Salih Al-Azzawi(Ph.D.)** The one who spared no effort to help me, he opened his house for me, as is his habit with all students of knowledge, and I used to sit with him for long hours reading to him and he did not find any embarrassment in that, and he was urging me to search, and he desired me in it and strengthened my resolve to him, so he has the reward from God and from me all appreciation, may Allah preserve him, enjoy health and wellness, and benefit from his knowledge.

I would especially like to thank **Prof. Karim Sadun Ali (Ph.D.)** for his support and for all the opportunities he has provided me to continue my research.

I wish to express my sincere thanks to Asst. Prof. Zahid Ismail (Ph.D.) and Dr. Amer Al-Baldawi, for their support and help during the period of the study

I would like to thank my friends Anmar Ayoub Khadim and Zainab Bresam Fajer for the kind help and cooperation

Finally, I would like to express my sincere thanks to all those who helped me in producing this study to the fullest.

Zainab Abd Awan

Declaration Form

I hereby declare that this thesis entitled titled (Serological and Molecular Detection of H5N8 Influenza Virus in Layer Hens in Diyala Governorate) presented at the College of Veterinary Medicine-University of Diyala in 2022, is my original work, except for quotations and citations which have been duly acknowledged. I also declare that it has not been submitted previously or concurrently, for any other degree at the University of Diyala or other Universities.

Zainab Abd Awan Hama

/ /2022

Abstract

The highly virulent strain of influenza virus first appeared in poultry in 1996 and was named the H5N1 avian influenza virus of the clade 2.3.4 H5 HPAIV.

This study is to use serological identification and molecular detection by ELISA, Real-Time PCR, and RT-PCR to locate the H5N8 virus in various commercial layer flock farms in the Governorate of Diyala from four study locations between September 2021 to April 2022. Also, the study aimed to explore the sequence of the suspected AIV and to observe the relatedness of local Iraqi strains and reference strains from the Gene bank by phylogenetic analysis. Blood samples (364) were collected in the current study from four distinct sites of commercial layer flocks located all over Diyala Governorate at the age of 70 and 200 days old for the serological procedure by using the indirect ELISA technique. Furthermore, for molecular detection, according to severe clinical signs and high mortality rate that appeared on the infected commercial layer flocks from each four study regions, six samples from each flock at age of 200 days old were collected to detect the pathogenic virulent strain of AIV by using real-time PCR through using the specific kit for H5 and H8 protein and specific primer and prob (AIH-5 and AIN-8).

For detection and sequencing, RT-PCR was used for this purpose, 15 gm of tissue samples (trachea, lung, and liver) from clinically commercial layers flocks showing obvious influenza virus infection were taken at 70 and 200 days of age, were exposed to molecular detection by using RT- a polymerase chain reaction. From all samples collected RNA was extracted and screened by RT-PCR by using two Paris of publishing selective primers . Extracted samples were screened by RT-PCR to amplify the HA- gene of the avian influenza virus. Sequencing present study was followed to determine the biological diversity of the predominant serotype in Diyala Governorate. Only one sample (S1) result from positive PCR covering the coding regions of the HA gene in poultry infected with AIV was amplified. the pattern of observed nucleic acid sequences of infected samples with references to nucleic acid sequencing from the NCBI database.

After that, a thorough tree was constructed using the neighborjoining method, to evaluate the precise serotyping of the detected variations and their phylogenetic spread by the NCBI BLASTn.The results of the current study showed that the positivity rate of the mean anti-AIV H5N8 rate in AL-Khales flocks which was considerably higher than the three other locations , followed by those layers of AL-Ghalibia flocks . The variations in positive serum between the current research flocks in two areas (AL-Khales and AL-Ghalibia) were statistically significant. Whereas the positive rate in Baqubah and Kanaan, when compared to the AL-Khales region, the differences between the current research flocks at three regions with positive serum were not significant but statistically significant .

The positivity of antiAIV H5N8 titer rates was substantially higher in AL-Khales flocks at 200 days old compared to AL-Ghalibia areas) and also it was substantially higher than all other two regions, namely (Baqubah and Kanaan . Using qRT- PCR in molecular detection of HPAIVH5N8, results showed that 6 out of 24 tracheal tissue samples from suspected flocks were positive with prevalence results of 25%.

. Using conventional Reverse Transcriptase -PCR for H5N8HPAIV detection, the results showed that, out of 48 samples from four regions flock, 32 samples (66.6%) were positive for H5N8. One strain was recorded in NCBI and got an accession number of

(ON247929). The NCBI BLASTn engine found a 99 percent sequence similarity between the sequencing of the local avian influenza virus H5N8 sample and the targeted reference for the 320 bp amplicons. Analyzing the sample detection from layer hens infected with HPAIVH5N8, the present work indicated two variants in the nucleic acid of studied samples C>T70 and G>A106.

These variants showed silent effects (p. Gly288= and p. Ala300=) on the investigated HA-encoded protein. It was inferred from the tree that our investigated sample was suited in the immediate vicinity to Nigerian strains of the serotype H5N8 which were recorded and confirmed in GenBank with acc.

Table contents

Section	Subjects	Page
No.		No.
I.	Abstract	Ι
II	Table of contents	IV
III	List of tables	Х
IV	List of Figures	XII
V	List of abbreviations	XV
	Chapter One: Introductions	
	Introductions	1
	Chapter Two: Review of Literature	
2.1	Avian Influenza	5
2.2	Historical Background	6
2.3	Etiology	8
2.4	Replication Of the Virus	10
2.5	Transmission	14
2.6	Influenza Virus Survival in The Environment	15
2.7	Host Range of The Virus	17
2.8	Pathogenesis	19
2.9	Epidemiology	22

2.10	Morbidity And Mortality	24
2.11	Incubation Period	26
2.12	Clinical Signs	26
2.13	Post Mortem Lesions	30
2.13.1	Low Pathogenic Avian Influenza	30
2.13.2	Highly Pathogenic Avian Influenza	31
2.14	Diagnostic Tests	32
2.15	Treatment	33
2.16	Control	34
2.16.1	Disease Reporting	34
2.16.2	Prevention	35
2.16.3	Disinfection	36
2.16.4	Vaccination	37
	Chapter Three: Materials and Methods	L
3.1	Study Design	39
3.2	Samples Collection	41
3.3	Materials	41
3.3.1	Laboratory Equipment	41
3.3.2	Material Used in Elisa for Serological Detection of AIV	43

3.3.2.1	Elisa Kit	43
3.3.3	Material Used in Molecular Detection of	44
	Highly Pathogenic Avian Influenza H5N8	
3.3.3.1	Material Used in Real-Time-RT-PCR	44
3.3.3.1.A	Components Use for Real-Time PCR Kit	45
3.3.3.1.B	Materials Used in Real-Time-PCR.	46
3.3.3.1.C	Primers Used in Real-Time PCR for a Finding	47
	Hpaiv H5N8	
3.3.3.2	Materials Used for RT-PCR	48
3.3.3.2. A	RNA Extraction Kit	48
3.3.3.2. B	RT-PCR Kit	49
3.3.3.2.C	Oligonucleotide Primers for RT-PCR	49
3.3.3.2. D	Reagent Used for Preparing Agarose Gel	50
3.4	Methodology	50
3.4.1	Sample Collection	50
3.4.1. a.	Blood Samples Collected for Serological	51
	Detection	
3.4.1. b.	PCR Tissue Samples	51
3.4.2	Sample Processing	53
3.4.2.1	Preparation of Serum Samples for Elisa Testing	53

3.4.2.1. a.	Principle of Elisa Kit	54
3.4.2.1. b.	Preparation Of Washing Dilution	54
3.4.2.1.c.	Preparation of Serum	54
3.4.2.1. d.	Elisa Procedure	54
3.4.2.2	Processing Samples for Molecular	55
3.4.2.2. A	RNA Extraction by Using (Kylt® RNA / DNA Purification Kit)	55
3.4.2.2. A.1	Buffer Preparation	56
3.4.2.2. A.2	Protocol	56
3.4.2.2. A.2	Prepare the Required Sample for Extraction	56
3.4.2.2. A.3	Lysis	56
3.4.2.2. A.4	Binding	56
3.4.2.2.A.5	Washing Step	57
3.4.2.2. A.6	Elution	57
3.4.2.2. A.7	Estimation Of the RNA Concentration	57
3.4.3	Processing Sample AIV (H5N8) For Real- Time-PCR	58
3.4.3.1	Protocol	58
3.4.3.1. A	Extraction of the Sample	58
3.4.3.1. B	RNA Processing	58

3.4.3.1.C	Amplification and Reaction Setup (Real-Time RT-PCR)	58
3.4.3.1. D	Validity and Qualitative Results in Data Analysis	59
3.4.4	Processing Samples for RT-PCR	60
3.4.4. A	Preparation of the Sample	60
3.4.4. B	RNA Extraction	60
3.4.4.C	RNA to cDNA Conversion	60
3.4.4. C.1	Principle	60
3.4.4. C.2	Protocols	61
3.4.4. C.3	The Primers Utilized in the Interaction	61
3.4.4. C.4	Detection of HPAIV H5N8 Using RT-PCR	62
3.4.5	cDNA Detection by Electrophoresis	63
3.4.5. A	Agarose Gel Electrophoresis	63
3.4.5. B	Preparation of Sample	64
3.4.5.C	Red Safe Nucleic Acid Staining Solution	64
3.4.6	Sequencing Methods	65
3.4.6.1	Pcr Amplicon Sequencing in Nucleic Acids	65
3.4.6.2	Interpretation of Sequencing Data	65
3.4.6.3	Variations in Nucleic Acid Translation	66

3.4.6.4	Construction of a Comprehensive	66
	Phylogenetic Tree	
3.5	Statistical Analysis	67
	Chapter Four: Results	
4	The Results	68
4.1	Samples Collection and Clinical Findings	68
4.2	Results of Elisa for Detection of AIV(H5N8)	71
4.3	Result of Molecular Test	79
4.3.1	Detection of AIV H5N8 from Tissue Samples	79
	Using RT-PCR	
4.3.2	Detection of AIV (H5n8) From Tissue	83
	Samples Using RT- PCR	
4.4	Sequence Results	86
4.5	Phylogenetic Analysis	92
	Chapter Five: Discussion	
	Discussion	96
5.1	Clinical Signs of Infected Layer	97
5.2	Seroprevalence of AIV H5N8 of Layer	98
	Chickens according to Age	
5.3	Molecular Detection of HPAIV (H5N8) from	103
	Tissue Samples	

5.3. A	Detection of HPAIV H5N8 from Tissue	103
	Samples Using Real-Time PCR	
5.3. B	Detection of HPAIV H5N8 From Tissue	106
	Samples Using Conventional RT-PCR	
5.4	Sequence and Phylogenetic Analysis	108
Chapter Six: Conclusions and Recommendations		
6.1	Conclusions	116
6.2	Recommendations	117
References		
	References	119

List of Tables

NO	Title	Page No
	Chapter Three: Materials and Methods	
3.1	shows a list of the laboratory equipment and instruments that were used during the research.	41
3.2	Laboratory kit (Sun Long Biotech Co., LTD- Avian influenza H5N8 ELISA Kit, China).	43
3.3	The components of the ELISA kit used for detection of highly pathogenic Avian influenza H5N8 (Sun Long Biotech Co., LTD-China).	44
3.4	Reagents included in the Kylt® Influenza A - H5 Pathotyping kits:	46
3.5	Reagent and materials used for a finding AIVH5N8 BY real time-PCR	47
3.6	Primers and Prob used for Real-Time-PCR	47

3.7	shows the components used for RNA Extraction from	48
	tracheal sampless from laying hens suspected to be	
	infected with HPAIVH5N8.	
3.8	Reaction mixture used for the RT-PCR assay for the	49
	detection of HPAIVH5N8.	
3.9	Oligonucleotide primers used in the present study for	50
	detection of the AIVH5N8	
3.10	Reagents and Materials used in Agarose gel	50
	electrophoresis of cDNA	
3.11	Blood samples were collected from birds according	51
	to the farm's location, number, and age of birds.	
3.12	Postmortem tissues (n=24) for Real-Time –PCR were	52
	collected from birds according to the farm's location,	
	number, and age of the birds.	
3.13	Postmortem tissues (n=48) for polymerase chain	53
	reaction was collected from birds according to the	
	farm's location, number, and Age of birds.	
3.14	Real-Time PCR thermal cycler technique and reaction	59
	setup	
3.15	Protocol for H5N8 cDNA synthesis using a thermal	62
	cycler and reaction setup	_
3.16	Reaction setup and thermal cycler protocol for cDNA	63
	synthesis of HPAIVH5N8	
	Chapter Four	
4.1	The rate of anti-AIV H5N8 IgG positive in	73
	commercial flocks of layers varies with age in the	
	Baqubah area.	
4.2	The rate of anti-AIV H5N8 IgG positive in	74
	commercial layer flocks varies with age in the Kanaan	
	area.	
4.3	The rate of anti-AIV H5N8 IgG positive in	75
	commercial layer flocks varies with age in the AL-	
	Ghalibia region.	
4.4	Anti-AIV H5N8 IgG positive rate in commercial	76
	layer flocks according to age in the AL-Khales area	
4.5	Showed anti-AIV H5N8 IgG positive rates in	78
	commercial layer flocks by age in all four areas.	
4.6	The results of RT-qPCR for detection of H5 gene	80
	performed on six randomly selected samples of AIV	
	H5N8 virus infected layers	

4.7	The location and length of the 320 bp PCR amplicons	88
	utilized to amplify a part of the coding	l
	sequencessamplesHA gene inside AIVH5N8 genomic	l
	sequences in the reference strain (GenBank acc. no.	l
	MW961484.1).	l

List of Figures

Figure	Title	Page
No		No
	Chapter Two: Review of Literatures	I
2.1	Cartoon showing influenza virus replication cycle.	13
	Chapter Three: Materials and Methods	
3.1	An experimental form of the AIV H5N8 project	40
	design	
	Chapter Four: Results	I
4.1	Layer chicken naturally infected with HPAI of the	69
	H5N8 subtype, displaying congestion and cyanosis	
	of the comb and wattles (arrow).	
4.2	Layer chickens naturally infected with HPAI of the	69
	H5N8 subtype, showing hemorrhages on the shank	
4.3	Layer chickens naturally infected with HPAI of the	70
	H5N8 subtype, exhibiting hemorrhagic pancreatitis	
	(red arrow) and duodenal distension (yellow arrow).	
4.4	Layer chickens naturally infected with HPAI of the	70
	H5N8 subtype, displaying multifocal hemorrhages	
	in the myocardium(arrow)	

4.5	Commercial layer chicken naturally infected with	71
	HPAI of the H5N8 subtype, displaying hemorrhages	
	on the caecal tonsils (arrow)	
4.6	Anti-AIVH5N8 rates by age group among infected	73
	commercial layer flocks in the Baqubah region are	
	shown in a bar chart.	
4.7	Anti-AIVH5N8 rates in infected commercial layer	74
	flocks in the Kanaan area, broken down by age	
	group.	
4.8	Anti-AIVH5N8 rates by age group among infected	75
	commercial layer flocks in the AL-Ghalibia region	
	are shown in a bar chart.	
4.9	Anti-AIVH5N8 rate in infected commercial layer	76
	flocks in the AL-Khales area, broken down by age	
	group	
4.10	(A&B) Anti-AIVH5N8 rate by age group in	79
	infected commercial layer flocks in all four areas at	
	the same time (70 and 200 days old)	
4.11A,	Showed qRT-PCR was used to identify H5 virus	81
B, and	nucleic acid in tracheal samples suspected of having	
C.	AIVH5N8 from flocks of layer hens in the AL-	
	Khales and AL-Ghalibia utilizing smart cycle	
	fluorography.	
4.11D,	Showed qRT-PCR demonstrates the detection of H5	82
E, and	virus nucleic acid in tracheal samples from layers	
F.	suspected of having AIVH5N8 from flocks of	
	Baqubah and Kanaan utilizing smart cycle	
	fluorography.	

4.12	Conventional RT-PCR test of the HA	84	
А	(hemagglutinin gene) region used to screen AIV		
and B	H5N8 tissue samples.		
4.13	Conventional RT-PCR test of the HA	85	
А	(hemagglutinin gene) region used to screen AIV		
and B	H5N8 tissue samples.		
4.14	The specific site of the obtained 320 bp amplicon 8'		
	partially encompassed a section of the HA gene		
	(GenBank acc. no. MW961484.1). The blue arrow		
	in the diagram denoted the start point, while the red		
	arrow denoted the finish position.		
4.15	Local AIV H5N8 isolates' nucleic acid sequences	89	
	match the 320 bp amplicons of the HA genetic		
	sequences' matching reference sequences. The		
	letters "S" followed by a number refers to the local		
	sample number, whereas the sign "ref" refers to the		
	NCBI referencing sequence.		
4.16	Showed that within the studied poultry-infecting		
	Influenza A virus sample, amino acid residues		
	alignment with the observed variants of the HA-		
	encoded hemagglutinin.		
4.17.	The evolutionary tree of genetic variations of the	94	
А	HA gene segment of chicken-infecting Influenza is		
	represented by a circular cladogram.		
4.17.	The evolutionary tree of genetic variations of the	95	
В	HA gene fragment of infected layer chickens in a		
	rectangular cladogram format.		

List of Abbreviations

Abbreviation	Description
a. a	amino acid
AGID	Agar Gel immunodiffusion
AIV	Avian Influenza Virus
Arg	Arginine
Ct	Cycle threshold
ELISA	Enzyme-Linked Immuno Sorbent Assay
EtBr	Ethidium Bromide
НА	Haem Agglutinin
HI	Hemagglutination Inhibition
HPAI	Highly Pathogenic Avian Influenza
HRP	Horseradish Peroxidase
IgG	Immunoglobulin G
IVPI	I/V Pathogenicity Index
LPAI	Low Pathogenic Avian Influenza
М	Matrix
mRNA	Messenger Ribo Nucleic Acids
NA	Neuraminidase
NCBI	National Central for Biotechnology Information
NPAIV	Non-Pathogenic Avian Influenza Virus
NS	Nuclear Signals
O. D	Optical Density
OIE	World Organization for Animal Health
PCR	Polymerase Chain Reaction
PPE	Personal Protective Equipment

RRT-PCR	Quantitative Real-Time Reverse Transcription-
	PCR
RT-PCR	Reverse Transcription-Polymerase Chain
	Reaction
vRNA	viral RNA
vRNPs	viral Ribo Nucleoproteins

Chapter One Introduction

Introduction

The avian influenza virus epidemics that are sweeping the globe have a significant impact on the poultry sector. Because of the virus strain involved and the immunity of the flocks that are being raised, these outbreaks are linked to increased rates of morbidity and death (Vigeveno *et al.*, 2020).

Avian influenza is a highly pathogenic disease caused by infection with type A viruses within the family *Orthomyxoviridae*. The causative agent is one of the most catastrophic diseases affecting the poultry industry and is spreading all over the world.

Etiologically, the virus is a single-stranded RNA (ssRNA), negative sense, segmented genome (8 segments) with a total length of 13.5 kb (Lamb, 2001; Maclachlan and Dubovi, 2010).

The structure of neuraminidase (NA) and hemagglutinin (HA) spikes on the surface of these viruses allowed for further subtyping into one of 16 antigenically different HA subtypes ranging from H1 to the H16, and one of nine NA subtypes ranging from N1 to the N9, while two subtypes which have been detected in bats (subtype H17N10 and subtype H18N11) represented the remaining 2 HA (17 to 18) and 2 NA sub (Tong *et al.*, 2013; Tzarum *et al.*, 2017).

These viruses can attach to the sialic acid of host cells' surface via the HA protein that presents on their surface, but the (NA) protein helped the virus escapes from infected cells once it had completed its reproduction cycle (Tzarum *et al.*, 2017; Wang *et al.*, 2018).

Besides birds, avian influenza A commonly infects other species and has been isolated from humans and other various animals like pigs, sea mammals, and horses (Ineson et al., 2022).

In contrast to influenza type B, which can exclusively infect humans, viruses of subtype A viruses have evolved to infect different animal species, and humans (Capua and Munoz, 2013; Tong et al., 2013; Dou *et al.*, 2018; Shrestha *et al.*, 2021).

Based on their capacity to cause this serious infection, two different types of these viruses have been detected and identified. Low pathogenicity (LP) avian influenza virus causes mild to sub-clinical symptoms in poultry (Webster and Rott, 1987; Swayne et al., 2013).

Whereas the second pathotype is very virulent namely (HPAIV) which may induce systemic effects and result in significantly high mortality rates that can occasionally exceed 100% (Hemida *et al.*,2019). Due to its rapid spread and extensive destruction of domestic poultry, HPAIV is sometimes referred to as the "fowl plague." This pandemic that occurred in the 20th century as a result of reassortment between influenza from avians and humans (genetic shift) caused numerous outbreaks in Asia, Africa, and Europe in five time periods during the years 1918, 1957, 1968, 1977, and 2009 by the types of H1N1, H2N2, H3N2, H1N1, and H5N1 respectively (Capua and Alexander, 2007; Dou et al., 2018; Gonzales *et al.*, 2018).

A crucial component of the identification and control of infection is the quick and accurate diagnosis and identification of infections caused by these viruses in avians. A conventional approach that is still widely used and recognized for the diagnosis of AIV is viral isolation in embryonated eggs from specified pathogen-free eggs (SPF), followed by serological detection of HA and NA subtyping (Lee *et al.*, 2004; Golabi *et al.*, 2021).

To identify the AIV and HA subtypes, some researchers have employed molecular biology techniques such as polymerase chain reaction. Furthermore, another PCR technique was used which is quantitative, fluorescence-based real-time PCR which is able in attaining sensitivity of exceptional nature, specificity, and stability (Elizalde *et al.*, 2014; Yang *et al.*, 2020).

The highly deadly H5N8 strain of avian influenza that was known as HPAI was initially discovered in wild birds in Asia in 2010 and subsequently spread to domesticated birds via migrating aquatic birds (Lee and Saif, 2009; Lee et al., 2015; Putri et al., 2018).

There are many reports on HPAIV H5N8 that spread in laying hens in many countries of the Middle East, including Iraq and its neighboring countries Iran, Saudi Arabia, and Lebanon (Al-Ghadir *et al.*, 2018). The surface HA receptor protein of H5 viruses belonged to various clades, whereas the 2.3.4.4.4 H5 clade was classified to be 8 sub-clades from (2.3.4.4a) to (2.3.4.4.h) as reported by Gu *et al.*, (2022). The first isolation of low pathogenic AIV from flocks of layers occurred in Iraq (Al-Nasrawi *et al.*, 2002). The first cases of the highly contagious avian influenza H5N8 strain were discovered in numerous flocks of laying hens in Diyala Province on March 11, 2018. The disease was discovered through a report from the International Office of Zoological Epidemiology with the report number (26150/11/3 OIE), which officially stated that there are two types of this strain. Its app in the Diyala herds, which are part of clade 2.3.4.4.b, led to a mortality rate of more than 90%.

Aim of The Study

This study aims to identify:

- 1- Serological identification of HPAIV (H5N8) in some flocks of layer chickens in the Governorate of Diyala.
- 2- Molecular detection of HPAIV (H5N8) in some flocks of layer chickens in the Governorate of Diyala.
- 3- Phylogenetic analysis of the HPAIV (H5N8) to observe the relatedness of local Iraqi strains and reference strains from GenBank (NCBI).