Ministry of Higher Education and Scientific Research University of Diyala College of Engineering

The integration of Risk management and BIM to Manage the duration of construction projects

A Thesis Submitted to the Council of College of Engineering University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Civil Engineering

> By Noor Haider Kadum BSC. Civil Engineering, 2014

Supervised by

Prof.Dr. Hafith Ibrahim Naji

2021 A.D

1443 A.H

بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ " هُوَ الَّذِي جَعَلَ الشَّمْسَ خِيَاءً وَالْقَمَرَ نُورًا وَقَدَّرَهُ مَنَازِلَ لِتَعْلَمُوا عَدَدَ السِّنِينَ وَالْحِسَابِ مَا خَلَقَ اللَّهُ ذَلِكَ إِلَّا بِالْمَتِّ يُغَصِّلُ الْآيَاتِ لِعَرْمِ يَعْلَمُونَ" حدق الله العلي العظيم (يونس- 5)

Supervisor Certification

We certify that the thesis entitled "The integration of Risk management and BIM to Manage the duration of construction projects" presented by "Noor Haider Kadume" was prepared under our supervision in Civil Engineering Department, University of Diyala, in partial Fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering.

Signature:

Prof.Dr. Hafith Ibrahim Naji (Ph.d.)

Supervisor Date: / /2021

In view of the available recommendation, we forward this thesis for debate by the Examining Committee.

Signature:

Name: Prof. Dr. Khattab Saleem Abdul-Razzaq (Ph.D.)

Title: Chairman of civil Engineering Department

Address: University of Diyala

Date: / /2021

Scientific Certification

I certify that this thesis entitled "The integration of Risk management and BIM to Manage the duration of construction projects" presented by "Noor Haider Kadume" has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature..... Name: Assist. Prof. Dr. Mervat Razak Wali Address: University of Baghdad /College of Engineering

Date:

Signature..... Name: Assist .Prof. Dr. Jumaa Awwad Hamad Address: University of Mustansiriya / College of Engineering

Date:

Language Certification

I certify that this thesis entitled "The integration of Risk management and BIM to Manage the duration of construction projects" presented by "Noor Haider Kadume" has been corrected linguistically, therefore, it is suitable for debate by examining committee.

Signature.....

Name: Assist .Prof. Dr. Ahmed Adel Nori(N.A.)

Address: College of Education for Human Science

Date:

Examining Committee Certification

We certify that we have read the thesis entitled "The integration of Risk management and BIM to Manage the duration of construction projects" and we have examined the student "Noor Haider Kadume" in its content and what is related with it, and in our opinion, it is adequate as a thesis for the degree of Master of Science in Civil Engineering.

Examination Committee

Signature

Prof. Dr. Khattab S. Abdul-Razzaq (Head of Department) The thesis was ratified at the Council of College of Engineering / University of Diyala.

> Signature Name: Prof. Dr. Anees A. Khadom Dean of College of Engineering / University of Diyala Date:

Dedication

I want to dedicate this study to:

my dear father

"His words of encouragement in the pursuit of excellence"

My Affectionate Mother

"Whose love and prayers took me to the zenith of glory and transform my dreams into reality"

my husband

"Which always encouraged and supported me"

My lovely daughter; my sisters; my brothers

Finally; to My Friends.

Acknowledgements

First and foremost, I thank God for his grace and blessings, and for the patience, perseverance, and high spirit he has given me.

I would like to express my sincere gratitude to Dr. Hafith Ibrahim Naji for his valuable comments, excellent guidance, and a lot of patience. his unprecedented and continuous support.

My thanks are presented as well to the Department of Civil Engineering- University of Diyala, for its assistance and cooperation.

I wish to express my sincere gratitude to all consultants and experts for their helping

I would like to express my sincere gratitude to all the engineers working in the engineering affairs department at Diyala University, who helped me with a lot of information during my study period. and cooperation in providing data for this research

Last but not least, I owe a very special thanks to my friends and colleagues; Farah Faaq Taha, Huda Y. Khudhaire for their help and support throughout the courses of my study.

Abstract

The integration of Risk management and BIM to Manage the duration of construction projects

By

Noor Haider Kaduom

Supervised by:

Proof . Hafth Ibrahim Naji

The special nature that characterizes construction projects in Iraq, the multiplicity of its stages from the idea stage to the end of the delivery stage, and the weakness in the application of risk management makes it vulnerable to many risks that have a unique impact on its basic objectives. The identification and management of risks in construction projects is an important approach to reduce their impact and increase the chances of success of the construction projects.

The research aims to identify the most important risk factors facing construction projects in Iraq, provide a tool based on the integration between risk management and BIM technology to manage the risks that effect the duration of construction projects, and help the project manager to understand the impact of risk management and taking measures for controlling the risks in construction projects.

In order to achieve the research objectives, the literature and previous studies related to the topics of risk management and BIM technology were reviewed and selects one of the Iraqi projects as a case study for applying the idea of the research. After that, the researcher identifies and assesses the risks that face the construction projects by using qualitative and quantitative techniques represented by the questionnaire, personal interviews, probability and impact matrix, Monte Carlo simulation. Finally conducting the integration between risk management and BIM through using tools provided by the BIM technique (Autodesk Revit 2020, Navis work manage2020) that helps for achieving the research objectives

The study diagnosed 48 risk factors that represent the most common risks in construction projects in Iraq, and reached a predictive model for risks by adopting two scenarios for the likelihood of risk occurrence and its impact on construction projects. From the approved scenarios comparison, the probabilistic percentage for completing the project was 109% of the planned percentage of project completion, and for the pessimistic scenario the probabilistic percentage of project completion, and reached approxed scenarios was 334% and 774% for (case 1) and (case 2), respectively.

The integration between risk management and BIM technology is a simulation of a 4D building model that visuals the effect of risks on project progress and shows the delayed activities and allows the comparison between the planned and actual project progress in a visual format.

Table of content				
<i>NO</i> .	Subject	Page No.		
	Supervisor Certification	I		
	Scientific Certification	II		
	Language Certification	III		
	Examining Committee Certification	IV		
	Dedication	V		
	Acknowledgements	VI		
	Abstract	VII		
	Table of Contents	IX		
	List of Figures	XIII		
	List of Tables	XVI		
	List of Symbols and Abbreviations	XVI I		
Chantar Ona	Introduction	Page		
Chapter One	Introduction	<i>No</i> .		
1.1	Introduction	1		
1.2	The Research Justification	2		
1.3	Research Hypothesis	3		
1.4	Research Aim and Objectives	3		
1.5	Research Limitations	4		
1.6	The Research Methodology	4		
1.7	Research Organization	7		
1.8	Review of Previous Studies	8		
1.9	Brief Description about the Research	14		
Chanter Two	I iterature Review	Page		
	Lucruure Review	<i>No</i> .		
2.1	Introduction	15		
2.2	The Concept of Risk	15		
2.3	The Concept of Risk Management	16		
2.4	The Importance of Risk Management in Construction	17		
	Project			
2.5	The Risks Management Methodology	18		

2.5.1	Risk Management Planning			
2.5.2	Risk Identification			
2.5.3	Risk Analysis			
2.5.3.1	Qualitative Risk Analysis	23		
2.5.3.2	Quantitative Risk Analysis	25		
2.5.4	Risk Response	30		
2.6	Concept of BIM in Project Management	32		
2.7	BIM Dimensions	34		
2.8	Possibilities of BIM	37		
2.9	Risk Management and BIM	38		
2.10	Contributions of BIM in Risk Management	38		
2.11	Managing the Risks Through BIM	39		
2.12	Summary	41		
Chapter	Field Stade.	Page		
Three	Tieta Situay	No.		
3.1	Introduction	42		
3.2	Field Questionnaire	42		
3.3	The Sources of Data for the Field Study	43		
3.4	Questionnaire Design	44		
3.4 3.5	Questionnaire Design Data Collection	44 46		
3.4 3.5 3.6	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the Data	44 46 47		
3.4 3.5 3.6 3.6.1	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency Ratio	44 46 47 47		
3.4 3.5 3.6 3.6.1 3.6.1.1	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the Respondents	44 46 47 47 47 47		
3.4 3.5 3.6 3.6.1 3.6.1.1 3.6.1.1	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace Responses	44 46 47 47 47 47 48		
$\begin{array}{r} 3.4 \\ 3.5 \\ 3.6 \\ 3.6.1 \\ 3.6.1.1 \\ 3.6.1.1.1 \\ 3.6.1.1.2 \end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork Sector	44 46 47 47 47 48		
$\begin{array}{r} 3.4 \\ 3.5 \\ 3.6 \\ 3.6.1 \\ 3.6.1.1 \\ 3.6.1.1.1 \\ 3.6.1.1.2 \\ 3.6.1.1.3 \end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork SectorThe Academic Qualification	44 46 47 47 47 48 48 49		
$\begin{array}{r} 3.4 \\ 3.5 \\ 3.6 \\ 3.6.1 \\ 3.6.1.1 \\ 3.6.1.1.1 \\ 3.6.1.1.2 \\ 3.6.1.1.3 \\ 3.6.1.1.4 \end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork SectorThe Academic QualificationEngineering Specialization	44 46 47 47 47 47 48 48 48 48 49 49		
$\begin{array}{r} 3.4\\ 3.5\\ 3.6\\ 3.6.1\\ 3.6.1.1\\ 3.6.1.1.1\\ 3.6.1.1.2\\ 3.6.1.1.3\\ 3.6.1.1.3\\ 3.6.1.1.4\\ 3.6.1.1.5\end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork SectorThe Academic QualificationEngineering SpecializationWork Field	44 46 47 47 47 47 48 48 48 48 49 49 49 49		
$\begin{array}{r} 3.4\\ 3.5\\ 3.6\\ 3.6.1\\ 3.6.1.1\\ 3.6.1.1.2\\ 3.6.1.1.2\\ 3.6.1.1.3\\ 3.6.1.1.4\\ 3.6.1.1.5\\ 3.6.1.1.6\end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork SectorThe Academic QualificationEngineering SpecializationWork FieldYears of Experience	44 46 47 47 47 47 48 48 48 48 49 49 49 49 50		
$\begin{array}{r} 3.4\\ 3.5\\ 3.6\\ 3.6.1\\ 3.6.1.1\\ 3.6.1.1.1\\ 3.6.1.1.2\\ 3.6.1.1.2\\ 3.6.1.1.3\\ 3.6.1.1.4\\ 3.6.1.1.5\\ 3.6.1.1.6\\ 3.6.1.1.7\end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork SectorThe Academic QualificationEngineering SpecializationWork FieldYears of ExperienceCurrent Job Position	44 46 47 47 47 48 48 49 49 50 50		
$\begin{array}{r} 3.4\\ 3.5\\ 3.6\\ 3.6.1\\ 3.6.1.1\\ 3.6.1.1\\ 3.6.1.1.2\\ 3.6.1.1.2\\ 3.6.1.1.3\\ 3.6.1.1.4\\ 3.6.1.1.5\\ 3.6.1.1.6\\ 3.6.1.1.7\\ 3.6.1.1.8\end{array}$	Questionnaire DesignData CollectionThe Statistical Methods that Used for Analyzing the DataThe Frequency RatioGeneral Information of the RespondentsThe Workplace ResponsesWork SectorThe Academic QualificationEngineering SpecializationWork FieldYears of ExperienceCurrent Job PositionType of Project Implemented	44 46 47 47 47 48 48 49 49 50 50 51		

3.6.3	Risk Score				
3.6.3.1	Occurrence Probability of Risks and Its Impact				
3.6.3.2	Most Significant Risk Factors				
3.7	Software Tools that used in Current Research				
3.7.1	Revit Software				
3.7.2	Navisworks Software				
3.7.3	Risky Project Professional 7.1	61			
3.7.4	Ms. Project Software	61			
3.8	Summary	62			
Chapter Four	Integration BIM Technique with Risk Management	Page No.			
4.1	Introduction	63			
4.2	Case Study I : Student dorms building No. (1) at the University of Diyala	63			
4.3	Case Study II: student dorms building No. (2) at the University of Diyala				
4.4	The Reasons for Selecting Cases Studies	64			
4.5	Generating 3D Model for Building	65			
4.6	Modeling the Proposed Methodology for Case Study I	66			
4.6.1	Planning for Risk Management	67			
4.6.2	Risk Evaluation	67			
4.6.2.1	Preparing Construction Project Scheduling for Case Study I	69			
4.6.2.2	Importing Construction Project Schedule	71			
4.6.2.3	Risk Register	71			
4.6.2.4	Identifying of Uncertainty Bands	72			
4.6.2.5	Selecting of the Probability Distribution	73			
4.6.2.6	Probability Occurrence of the Risk and its Impact	74			
4.6.2.7	Running the Risk Analysis	76			
4.6.2.8	Analysis and Discussion of the Quantitative Risk Analysis Results for Optimistic Scenario				
4.6.2.8.1	The Results of the Gantt Chart	77			
4.6.2.8.2	Project Summary	78			

4.6.2.8.3	Tracking Char	80			
4.6.2.8.4	Sensitivity Analysis				
4629	Analysis and Discussion of the Quantitative Risk Analysis				
7.0.2.9	Results for Pessimistic Scenario	02			
4.6.2.9.1	Results Gantt Chart	82			
4.6.2.9.2	Project Summary	85			
4.6.2.9.3	Tracking Chart	88			
4.6.2.9.4	Sensitivity Analysis	90			
4.6.3	Scheduling the Probabilistic Project Duration	90			
4.6.4	Navisworks Simulation Videos	93			
4.6.4.1	Generating 4D Model	93			
4.6.4.2	The 4D Building Simulation in Navisworks	94			
4.6.5	Risk Response Stage	97			
4.6.5.1	Implementation of Risk Response	100			
4.7	Modeling the Proposed Methodology for Case Study II	104			
4.7.1	Collect Risk Information	105			
4.7.2	Construction Scheduling of Project Activities	106			
4.7.3	Generating 4D Model Simulation	109			
4.8	Summary	112			
Chapter Five	Conclusions and Recommendations	Page			
		No.			
5.1	Introduction	114			
5.2	Conclusions	114			
5.3	Recommendations	116			
5.4		117			
	Suggestion of Future Studies	11/			
	References	117			
	Suggestion of Future Studies References Appendix A	117 118			
	Suggestion of Future Studies References Appendix A Appendix B	117 118			
	Suggestion of Future Studies References Appendix A Appendix B Appendix C	117 118			
	Suggestion of Future Studies References Appendix A Appendix B Appendix C Appendix D	117 118			
	Suggestion of Future Studies References Appendix A Appendix B Appendix C Appendix D Appendix E				

List of Figures						
Figure No.	e No. Title					
		No.				
1.1	The research methodology	6				
2.1	Risk management methodology	20				
2.2	Probability & impact matrix	24				
2.3	Risk matrix	25				
2.4	Types of simulation models	29				
2.5	BIM Project Lifecycle Application	34				
2.6	BIM Dimensions	35				
2.7	level of Importance of BIM dimensions	36				
3.1	Components of the Questionnaire	45				
3.2	Workplace Responses	48				
3.3	Work Sector	48				
3.4	Academic Qualification	49				
3.5	Engineering Specialization	49				
3.6	Work Field	50				
3.7	Years of Experience	50				
3.8	Current Job Position	51				
3.9	Type of Project Implemented	51				
3.10	Revit interface and their components.	60				
4.1	3D modeling for Case Study	65				
4.2	Framework of the integration between BIM and risk	67				
4.3	Gantt chart view for the planned project schedule	70				
4.4	Assigning risks to the project schedule	72				
4.5	Uncertainty Bands for Optimistic Scenario	73				
4.6	Uncertainty Bands for Pessimistic Scenario	73				
4.7	Gant chart view for the optimistic project scenario	78				
4.8	project summery for optimistic scenario	78				
4.9	Frequency chart for the project finish time for optimistic scenario	79				

4.10	Frequency chart for the project duration for optimistic	80
	scenario	
4.11	Tracking chart for the optimistic scenario.	81
4.12	Sensitivity analysis for optimistic scenario	81
4.13	Gant chart view for the pessimistic scenario(case1)	83
4.14	Gant chart view for the pessimistic scenario(case2)	84
4.15	Project summary for the pessimistic scenario(case1)	85
4.16	Project summary for the pessimistic scenario(case2)	85
4.17	Frequency chart for the project finish time for pessimistic	86
	scenario(case1)	
4.18	Frequency chart for the project finish time for pessimistic	87
	scenario(case2)	
4.19	Frequency chart for the project duration for pessimistic	87
	scenario(case1)	
4.20	Frequency chart for the project duration for pessimistic	88
	scenario(case2)	
4.21	Tracking chart for the pessimistic scenario. (case1)	89
4.22	Tracking chart for the pessimistic scenario. (case2)	89
4.23	Sensitivity analysis for pessimistic scenario(case1)	90
4.24	Sensitivity analysis for pessimistic scenario(case2)	90
4.25	Probabilistic construction project schedule for optimistic	91
	scenario	
4.26	Probabilistic construction project schedule for pessimistic	92
	scenario(case 2)	
4.27	Generating 4D model	93
4.28	4D Building Simulation in Navisworks	94
4.29	Simulation video screenshot at 330 days for no risk	95
	scenario	
4.30	Simulation video screenshot at 330 days for optimistic	95
	scenario	
4.31	Simulation video screenshot at 330 days for pessimistic	96
	scenario	
4.32	Simulation video screenshot with completion date for no	96

	risk scenario				
4.33	Simulation video screenshot with completion date for	97			
	optimistic scenario.				
4.34	Simulation video screenshot with completion for	97			
	pessimistic risk scenario				
4.35	Risk response plan	101			
4.36	Probability and impact for optimistic scenario	102			
4.37	Probability and impact for pessimistic scenario(case1)	102			
4.38	Probability and impact for pessimistic scenario(case 2)	102			
4.39	Waterfall diagram for optimistic scenario	103			
4.40	Waterfall diagram for pessimistic scenario(case1)	103			
4.41	Waterfall diagram for pessimistic scenario(case2)	104			
4.42	Framework of the evaluation project performance	105			
4.43	Planned construction scheduling for case study	107			
4.44	Actual construction scheduling for case study	108			
4.45	Simulation running for 4Dmodel in Navisworks software	109			
4.46	Video screenshot for actual project progress	110			
4.47	Video screenshot for planned project progress	110			
4.48	Video screenshot for actual project progress at 460 days	110			
4.49	Video screenshot for actual project progress at 2052 days	111			
4.50	Video screenshot for actual project progress at 2052 days	111			
4.51	Video screenshot for planned project progress at 400 days	112			
4.52	Video screenshot for actual project progress at 2265 days	112			

List of Tables					
Table No.	No. Title				
		No.			
1.1	Review of previous studies	8			
2.1	Risk management stages arrangement	19			
2.2	BIM definition & Description(The Researcher)	32			
2.3	BIM Possibilities	37			
3.1	The Personal Qualification of the Engineer's Interviews	43			
3.2	Personal Qualification of Arbitrators and experts	44			
3.3	Distribution of the questionnaire	47			
3.4	Cronbach's alpha for questionnaire form	52			
3.5	The intervals of influence level	53			
3.6	Probability and Impact Matrix	54			
3.7	Relative Importance Level for Risk Score	54			
3.8	Qualitative Evaluation and the Risk Factors Ranking	55			
3.9	The Most significant risk factors according to risk score	59			
4.1	Details of the Case Study I	63			
4.2	Details of the Case Study II	64			
4.3	Chance and outcome and outcome type for optimistic scenario	74			
4.4	Chance and outcome and outcome type for pessimistic scenario	82			
4.5	Chance and outcome and outcome type for pessimistic scenario(case2)	82			
4.6	Measurement of risk mitigation	98			

List of Symbols and Abbreviations			
Abbreviations	Explanation		
BIM	Building Information Modeling		
2D	Two Dimension		
3D	Three Dimension		
4D	Four Dimension		
5D	Five Dimension		
6D	Six Dimension		
FMEA technique	Failer Mode and Effect Analyses Technology		
SPSS	Statistical Package for Social Sciences		
RM	Risk Management		
MCS	Monte Carlo Simulation		
IFC	Industry Foundation Classes		
GBS	Green Building Studio		
Са	Cronbach's Coefficient Alpha		
Ms. Project	Microsoft Project		
XML	Extensible Markup Language		
MPX	Microsoft Project Exchange		
MCS	Monte Carlo simulation		
AEC Industry	Architecture, Engineering and Construction Industry		

CHAPTER ONE

Introduction

Chapter One Research Introduction

1.1 Introduction

Construction projects exposed to severe and multiple risks during their lifecycle beginning from the stage of decision-making to the project delivery stage. Risks in generally described as events that impact the project objectives, and cause delays in the project delivery or increase the project cost, and in sometimes impact the project quality. (Rasheed,2015).

The risk management process has been becoming one of the important requirements for construction projects and it includes the identification of risk, the assessment of risk, the response to the risk, and the monitoring of risk (Abd El-Karim et al.,2017).

The application of some modern techniques is necessary for attaining the proper solutions under accurate consideration (Ardeshir et al.,2018). At present, most enterprises of construction headed for using BIM technology for their projects (Lam et al., 2017), BIM technology provides an environment that is easy for project design, modification of the 3D building model, as well as storage the data for the 3D model for the building(Eastman et al, 2011). Another feature of BIM technology is the ability to share information between different parties of the project during the different project stages (Jupp, 2017). Based on features and characteristics previously described by BIM technology, this technique can be used as a tool for managing risk (Bråthen &Moum, 2016), which is an important process during the planning and construction of the project(Zou et al., 2017). BIM helps the dealing with the complexity of the projects that impact the main objectives of construction projects

(Bryde et al., 2013). also, the BIM technique facilitating the communication between all parties of the project for reaching successful management of risk in the construction projects(PMI, 2013).

This chapter provides an introductory overview to illustrate the research that has been made, the research justifications, the research hypothesis, describe the research aim and objectives. In addition, clarify the research limitations and research methodology is specified, as well as discussing previous studies.

1.2 The Research Justification

The research justification can be illustrated as follows:

- 1. Construction projects in Iraq face many risks in the implementation stage that causes stoppages of the projects and not to complete them within the specified period. Therefore, there is a need to manage these risks and try to address them to maintain the basic objectives of the construction project, which are cost, time, and quality.
- 2. 2. The need to use and develop a system to diagnose the risk and evaluating them based on the integration of risk management techniques with BIM as a means of controlling the inherent risks of construction projects.
- 3. Despite the complex nature of the decisions to enter the construction market, the existing methods and tools for evaluating construction opportunities are preliminary and are generally based on personal intuition or previous experience, both of which are easily affected by uncertainty and bias and therefore the construction companies needs for effective and comprehensive methods to manage uncertainties in their projects.

1.3 Research Hypothesis

Based on the justifications mentioned above, it has been possible to formulate the research hypothesis as follows:-

To prove the possibility of integration between risk management and BIM to develop a methodology that will help to make the right and correct decisions regarding the risks facing construction projects and address them, which leads to the successful completion of the implementation of the project within its objectives.

1.4 Research Aim and Objectives

This research aims to diagnoses the risks that affect the duration of construction projects in Iraq and managing the identified risks by developing a hybrid technology that uses risk management techniques in conjunction with BIM to assess and address the risks that hinder the successful completion of the construction project.

For achieving these aims of the current research, there are some objectives that must be achieved as follows:

- 1. Diagnoses the most common risk factors in construction projects and identify the probability of risks occurrence and its impact on the construction projects.
- 2. Conduct the quantitative risk evaluation by using modern technology and put the required measures for responding to them.
- 3. Building a predictive model for managing risks.
- 4. Showing the quantitative risk evaluation in a visual format.

5. Investigating the characteristics provided by the BIM technique in evaluating and responding to risks in construction projects.

1.5 Research Limitations

The research limitation can be illustrated as follows:

- 1. Identify , analyze and respond to the risks that occur through the implementation of construction projects.
- 2. Selecting student dorms No. (1) and No. (2) at the University of Diyala as a case study.
- 3. Selecting the construction and housing sector as a research sample for distribution of the questionnaire.
- 4. The implementation duration of the projects involved in the research was limited to the period between (1/1/2012 1/2/2021).
- 5. Temporal limitation: The research duration was limited to the period of 2020-2021.

1.6 The Research Methodology

The research methodology adopted in the current research includes two parts and can be illustrated as follows:

2.1Part one (theoretical part): This part includes reviewed the literature for the previous studies within the scope of the research which includes (papers, thesis, websites and books).

2.2 Part two (practical part):

The practical part of the current methodology is including the following:

- Identify case study and collect information which includes (2D drawing, data, project duration, bill of quantities.)
- Generating a 3D model for the building by using Autodesk's Revit 2020 with several details.
- Design a questionnaire for defining the most common construction project risk that affects construction projects in Iraq.
- 4. Conduct the qualitative risk analysis by using probability and impact matrix technology.
- 5. Scheduling the project details (start, finish and duration) by using MS Project 2010.
- 6. Importing the construction project schedule to risky project professional 7.1 by intaver for quantitative risk analysis.
- 7. Scheduling the simulated duration obtained from the quantitative risk analysis.
- Generation 4D simulation for the building by using Navisworks manage 2020 by Autodesk
- 9. Discuss the effect of risk on project duration through the simulation result and conclusions and recommendations reached by the researcher.

Figure (1.1) shows the research methodology adopted in case of study

Figure (1.1) The research methodology (Researcher)

1.7 Research Organization

The organization of the research is divided into five chapters :A summarized description for each chapter is illustrated below.

Chapter One: Research Introduction

This chapter introduces the research background, research Justification, research hypothesis, research aims and objectives, research limitation, a brief explanation of the research methodology, and explains the previous studies.

Chapter Two: Literature Review

This chapter illustrates the basic theoretical literature review in the scope of the research for understanding the entire work contained in this thesis. This chapter includes two main parts: The first part explains the concept of risks, the concept of risk management, and its importance, the methodology that adopting for managing risks in construction projects, the stages of risk management, and its techniques. The second part explains the concept of BIM in project management, its dimensions, its advantages and possibilities, BIM and Risk management, Contributions of BIM in risk management, and finally, describe the BIM-related techniques for managing risks in construction projects.

Chapter Three: Field Study

This chapter explains the field questionnaire, The sources of data for the field study, the questionnaire design, the mathematical and statistical methods used in the data analysis, the qualitative risk analysis and explain the details of the case studies, the reasons for selecting case studies, ,and finally explain the software tools that used in current research.

Chapter Four: Integration BIM Technique with Risk Management

This chapter explains the modeling of the proposed methodology for the two cases in the current research, the generating of the 3D model for the building as well as creating a construction project schedule, conducting the quantitative risk analysis by using the Monte Carlo simulation technique and analysis and discussion the results, conducting 4D simulation for the building by using Navisworks 2020.

Chapter Five: Conclusions & Recommendations

This chapter illustrates the major conclusions and recommendations, as well as the suggestive of future studies.

1.8 Review of Previous Studies

Many studies in the field of risk management have been conducted by a number of researchers in different countries. Table (1.1)illustrates the previous studies related to managing risks in construction projects. The studies were divided into two groups (local studies, and global studies) according to their geographic location.

Local Studies (Iraqi studies)						
NO.	Researcher	Country	Methodology of Analysis	Software used For Statistical Analysis		
1	(Wali & Mahmood, 2020)	Iraq	 Questionnaire survey likelihood and severity matrix 	Microsoft Excel		

T 11	(1 1)	р .	C	•	· 1·
Lable	(1 1)	·Review	of nre	V1011S	studies
1 4010	(1,1)	.100 10 10	or pre	1040	bradiob

The work :Risk management

Identification and Management of Major Risk Factors in Construction of Healthcare Centers Projects

This paper studied the risk factors that facing the construction process of advanced healthcare centers by identifying these factors and enhancing the possible solutions depending on the opinion of experts. Government corruption represents the major risk factor that has a negative effect on the construction of infrastructure in the country. Other risk factors were the overrun of time, labor safety, environmental risks, which are related to waste treatment.

2

(Mohanad,2019)	Iraq	• • •	questionnaire survey RIII Monte Carlo Simulation sensitivity analysis.	•	Primavera risk analysis v8.7 software SPSS v 33
	The wo	rk :	Risk management		

The Effect of Inadequate Risk Management on Execution Time of Residential Complexes in Iraq

This research aimed at identifying the most significant risk factors and their impact on the execution time of complex construction projects and managing these risks. This study performs that by adopting the qualitative and quantitative techniques that representing by questionnaire, relative importance, Monte Carlo Simulation by using primavera risk analysis v8.7 software, and the sensitivity analysis. This study found that the most significant risk factors and have the most effects were implementing works that non-conforming to specification, inaccuracy of the schedule, delaying the payment of the advances according to the contract with a risk score for each risk factor (0.534), (0.527), and (0.498) respectively. Also, the study found that risks have different effects according to the size of the residential project.

3

Iraq

• Questionnaire

	Mahmood,2018)		survey			
			• Personal interviews			
	The work :Risk management					
	Risks of Design Stage in Iraqi Construction Project					
	This study focused on identify and analyze the risks of the design stage and its					
	effect on constructi	effect on construction projects. The study clarifies that the effect of the design				
	stage depends on the method of contracting with the company where the Lump-sum contract type was the most type of contract that affects the project and more effect from unit price contract .During the design stage, the most important factor that effects were the fast responding of the project team for preparing the design documents for facilitating the sequence of execution.					
4	(Ali,2017)	Iraq	• Questionnaire survey	• MATLAB		
			• Neural Network	7.11.0		
			• Decision tree	• SPSS		
			• Support Vector			
			Machine			
	The work :Risk management					
	Managing Of Cost Risks Generated From Risk Responses In Construction					
	Projects					
	This research studied cost risk management generated from responding to risks in construction projects and controlling them by adopting quantitative					
	and qualitative me	thods of ris	k management by using si	mulation technique		
	(system dynamic),	(system dynamic), Fuzzy decision tree. The study finding of risk responding				
	strategy illustrates as follow: the strategy of investment show saving in cost					
	30%, mitigation str	ategy show s	saving in costs 40%, the stra	ategy of giving land		
	to contractor show save in the cost about 40% finally the strategy of BI					
	show saving in cost about 25%.					
5	(Aksana	Iraq	• Questionnaire survey	• SPSS		
	Jihad,2016)		• The Relative	Software		
			Importance Index			
	The work : Risk management					
	A Study For Significant Risks And Their Effects On Construction Projects In					
	Erbil City					

This study aimed at identifying the top major of 50 risk factors by contractors, owners, and engineers according to their probability occurrence and impact on projects also analyzing the effect of these risks on cost, time, quality of the construction projects. The study finding that the most significant factors of risk are: the owner inability for financing, awarding the design of projects to unqualified designers, poor experience , qualifications &skills of technical staff and contractor, the defective design, poor supervision and qualifications of the owner's engineer, and delay in the approval of inspection and tests and these risks result from four risk factors: the owner, management, the contractor, and the consultant.

Clobal Studios

Giobal Studies						
1	(Hiyassat et al.	Jordan	• literature review	• Microsoft		
	,2020)		• questionnaire survey	Excel		
			• relative Importance			
			Index (RII)			
	The work :Risk management					
	Risk allocation in public construction projects: the case of Jordan					
	This research tried to identify, assess, and allocate the public construction					
	projects (PCP) risks in Jordan for reducing the costly claims and disputes. The					
	finding of this study is that delays in client payments were the top risk factor					
	and the owner should shoulder such a risk according to the result of the					
	respondents who indicated that. On the other hand, supplier default and					
	decrease in productivity represent the two top factors that should be					
	shouldered by contractors. The study results help practitioners for allocating					
	risks to the party that have the ability for assessing, controlling, and					
	managing these risks.					
2	(Gebrehiwe et al.	China	TOPSIS technique	• Not		
	,2019)		• FCE technique	mentioned		
			• Questionnaire			
	The work :Risk management Risk Level Evaluation on Construction Project Lifecycle Using Fuzzy					

Comprehensive Evaluation and TOPSIS

This study discusses the evaluation of risks in case of occurring schedule

	delays at the different stages of the construction projects. The study finding					
	that the construction stage influenced in highly with a percent of(44%), the					
	second stage that highly influenced is post-construction with a percent of					
	(37%), and the least	(37%), and the least influence stage that is pre-construction (35%). The study				
	expected for using	this work a	as a tool to helps managers	for managing and		
	control schedule de	control schedule delays to eliminate project risks.				
3	(Swapnesh et	India	• 3D BIM model	• Autodesk		
	al.,2017)		• 4D BIM model	Revit 2016		
				• Navisworks		
				Manage 2016		
	The work :4D Simulation					
	Improve the Productivity of Building Project using Building Information					
	Modelling (BIM) Based 4D Simulation Model					
	This study aimed to explain 4D BIM for improving project coordination,					
	communication, and sharing the project information between all project teams					
	which is important	which is important in terms of performance and time of projects. This study				
	finding that BIM	finding that BIM provides advanced construction management skills for				
	scheduling the project activities, monitoring, and controlling. Also, the study					
	concluded 4D BIM represents the best alternative to traditional scheduling					
	tools of construction projects like bar charts, CPM networks .					
4	(El-Karim et	Egypt	• Questionnaire	• Microsoft		
	al.2017)		Risk Score	Excel		
			• AHP analysis			
			• Sensitivity analysis			
	The work :Risk management					
	Identification and assessment of risk factors affecting construction projects					
	This study aimed for identifying, studying, qualitative assessing, quantity					
	assessing the effects of the factors that impact cost and time contingency. The					
	finding by this study that the estimating cost and schedule contingencies					
	represent the major factors to achieve successful and realistic budget and					
	construction schedu	ule for the p	rojects.			
5	(Marco	Portugal	• concentual model	• DIM		
	(Marco	Tonugai	• conceptual model	• BIW		
	Petrus,2017)	Tonugai	FMEA technique	• Excel		

			• 3D modeling	Navisworks		
			• 4D modeling			
	The work :BIM with Risk management					
	A BIM-based tool to support time risk management in construction projects					
	This study tried to	visualize dif	fferent risks related to the time	me and cost during		
	the design and implementing stages by using a tool that can be helping to					
	understand the time and cost-related risks of the construction project and					
	helping to improve	helping to improve the communication between all project parties. The study				
	concluded the tool was an efficient communication. The FMEA interface and					
	models constitute	models constitute reliable information that helps the project manager for				
	providing to all stakeholders in the project such as the client of the project,					
	workers, subcontra	ctors.				
6	(Bonander &	Sweden	• Personal interviews	• Not		
	Ulriksson,2016)			mentioned		
	The work :Risk management					
	Risk Management in Residential Construction - An analysis of the risk					
	management process of a Swedish construction company					
	This study aimed for describing and analyzing the process of risk					
	management in a project-based organization in the industry of construction					
	and provide a better understanding of the usage of risk management in					
	practice and what underlying factors that affect the risk management process.					
	The study includes the perspective of the constructor and developer. The study					
	found that the risk management process depends on project members' personal					
	knowledge and experience. Also, it was found that constraints of time and					
	resources affect active work with risk management and this leads to					
	conducting the risk management process periodically, instead of continuously					
	throughout the project life cycle . And these obstacles can be avoided through					
	more prioritizing of the risk management process and awareness increasing of					
	its significance.					
7	(Dayoub &	Syria	• Questionnaire	SPSS software		
	Zrika,2016)			sonware		
	The work :Risk management					
	Risk Identification in Construction Companies: A Field Study on Construction					

Companies Working in Syria

This study aimed to identify risks in construction companies in Syria. The study findings that inflationary risks (hand labor wages, transportation costs, materials cost) represent the main factors of risks that facing the Syrian construction companies. Also, the absence of the culture of construction management represents the major threat because it does not show the risk and its effects .

1.9 Brief Description about the Research

This research explores to study the ability for using BIM technology in the field of risk management in construction projects in Iraq. Where the researcher tries for taking advantage of the benefits provided by the BIM technology represented by visualization and simulation for creating a dynamic environment that is similar to the real work environment by integrating the results of the quantitative risk analysis with a 3D model, which facilitates project managers for better understanding the project risk management and thus provides accurate identification of risks compared with traditional methods for risk management. previous studies used different methods for managing risks in construction projects. many of these studies used traditional techniques for managing risks in construction projects. Other studies used BIM technology in supporting time risk management and others used BIM for improving project productivity depending on 4D simulation. These studies did not use risky project software for quantitative risk analyzing and responding and did not show the quantitative risk analyses in a visual format.