Please use this identifier to cite or link to this item: http://148.72.244.84:8080/xmlui/handle/xmlui/6369
Title: Surge Tank Analysis for Water Hammer Remedy for Long Distance Pipeline
Authors: Nisreen J. Rasheed
Qassem H. Jalut
Keywords: Pipeline
Transient Flow
Water Hammer Remedy
Surge Tank
Issue Date: 2018
Publisher: University of Diyala – College of Engineering
Abstract: Various protection methods can be used for protecting the pipeline system from the impact of water hammer. Which includes the use of special materials for supporting the pipeline and the installation of special devices such as surge tanks, relief valves, and air chambers. In this study, to protect the pipeline system and reduce the effect of water hammer, surge tank has been used. Governing equations of transient flow with and without surge tank is numerically simulated using MATLAB software. Sensitivity analysis was investigated using several variables such as pipe diameter, wave’s velocity and friction factor. Method of characteristics (MOC) was implemented in this study. It was found that the diameter and friction factor of pipe have a significant impact on the results of transient flow and surge tank compared to the effect of wave’s velocity. It has been reached that the capacities of surge tanks at diameter (1m), are (1475m3) at first, second and fourth stages, (1360m3) at third and fifth stages and (570m3) at sixth stage. And at diameter (1.2m), the capacities are (1700m3), (1530m3) and (1475m3) at first, second and third stages respectively. But at diameter (1.4m), the capacities are (1590m3) at first and second stages. For all values of wave’s velocity, the capacities of surge tanks are (1760m3), (1530m3) and (1420m3) at first, second and third stages respectively. But the capacities of surge tanks at friction factor (0.007) are (1810m3), (1585m3) and (1245m3) at first, second and third stages respectively. However, for the capacity of surge tanks at the friction factor (0.008), it was mentioned when the surge tanks capacity of the diameter (1.2m) was mentioned. And when the friction factor is (0.009), the capacities are (1460m3) at first stage, (1415m3) at second and third stages and (570m3) at fourth stage
URI: http://148.72.244.84:8080/xmlui/handle/xmlui/6369
ISSN: 1999-8716
Appears in Collections:مجلة ديالى للعلوم الهندسية / Diyala Journal of Engineering Sciences (DJES)

Files in This Item:
File Description SizeFormat 
477 nissreen 8.pdf687.55 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.