المستودع الرقمي في جامعة ديالى

Classification and Prediction of Human Blood Cells Using Artificial Intelligence and Advanced Image Processing Techniques

عرض سجل المادة البسيط

dc.contributor.author Ahmad S. Lateef
dc.contributor.author Ahmed J. M. Al-Zuhairi
dc.contributor.author Mohammed Y. Kamil
dc.date.accessioned 2025-10-28T06:32:03Z
dc.date.available 2025-10-28T06:32:03Z
dc.date.issued 2025-10-25
dc.identifier.uri http://148.72.244.84/xmlui/handle/xmlui/16750
dc.description.abstract Abstract Background: Accurate blood cell classification is essential for diagnosing and monitoring blood disorders. Manual blood evaluation is cumbersome and subject to disagreement among specialists, which can negatively impact diagnostic reliability. Objectives: This study aims to develop an automated deep learning framework for accurate classification of major blood cell types, especially basophils, red blood cells, and bone marrow cells, to enhance the accuracy and efficiency of clinical diagnosis. Patients and Methods: A set of publicly available, high-resolution blood smear images obtained from a specific patient cohort with distinct genetic properties was analyzed, with standardized preprocessing applied to address variance. Multiple AI-based classification strategies were developed, and all models were evaluated on an independent test set using overall accuracy, precision, recall, and F1 score. Results: Wavelet scattering combined with an SVM delivered the strongest overall performance, surpassing both the custom CNN and ResNet variants. It achieved a near-perfect separation of basophils and erythroblasts and only occasional confusion with myeloblasts. These results highlight the sensitivity of the wavelet scattering method to subtle morphological differences in blood cells. Conclusion: This study highlights how machine learning-based image analysis techniques can reliably and accurately classify blood cells, reducing the need for the subjective manual interpretation that characterizes traditional microscopy. There is potential for increasing the accuracy of early diagnosis and simplifying patient treatment plans for hematological disorders by integrating these automated systems into standard clinical practice. en_US
dc.language.iso en en_US
dc.subject Hematological Diagnostics, Blood Cell Classification, Wavelet Scattering Transform, Transfer Learning. en_US
dc.title Classification and Prediction of Human Blood Cells Using Artificial Intelligence and Advanced Image Processing Techniques en_US
dc.type Article en_US


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

  • مجلة ديالى الطبية / Diyala Journal of Medicine
    مجلة ديالى الطبية تاسست حسب موافقة وزارة التعليم العالي والبحث العلمي - هيئة الراى في كتابهم المرقم 12س/2433 في 19/8/2010 اذ بدا بعدها اعضاء المجلة باستقبال البحوث العلمية وباختصاصات مختلفة كالعلوم الطبية بفرعيها السريرية والاساسية وطب الاسنان والعلوم الصيدلانية والتي تعالج قضايا علمية وطبية ذات صله وثيقة بالمجتمع العراقي خصوصا والشرق الاوسط عموما.

عرض سجل المادة البسيط

بحث دي سبيس


بحث متقدم

استعرض

حسابي